Simulate multiple data sets
Usage
sim.cs.multi(
nclus = 10,
lambdas = c(0.05, 0.1, 0.15, 0.2, 0.3),
num_cores = max(1, parallel::detectCores() - 1),
rng_seed = 1234,
renew.params = TRUE,
add.noise = TRUE,
verbose = FALSE,
...
)
Arguments
- nclus
number of clusters
- lambdas
#incidence rate, in events/person*year
- num_cores
number of cores to use for parallel computations
- rng_seed
starting seed for random number generator, passed to
rngtools::RNGseq()
- renew.params
whether to generate a new parameter set for each infection
renew.params = TRUE
generates a new parameter set for each infectionrenew.params = FALSE
keeps the one selected at birth, but updates baseline y0
- add.noise
a
logical()
indicating whether to add biological and measurement noise- verbose
whether to report verbose information
- ...
Arguments passed on to
sim.cs
lambda
a
numeric()
scalar indicating the incidence rate (in events per person-years)n.smpl
number of samples to simulate
age.rng
age range of sampled individuals, in years
age.fx
specify the curve parameters to use by age (does nothing at present?)
antigen_isos
Character vector with one or more antibody names. Values must match
curve_params
.n.mc
how many MCMC samples to use:
when
n.mc
is in1:4000
a fixed posterior sample is usedwhen
n.mc
=0
, a random sample is chosen
noise_limits
biologic noise distribution parameters
format
a
character()
variable, containing either:"long"
(one measurement per row) or"wide"
(one serum sample per row)
curve_params
a
data.frame()
containing MCMC samples of parameters from the Bayesian posterior distribution of a longitudinal decay curve model. The parameter columns must be named:antigen_iso
: acharacter()
vector indicating antigen-isotype combinationsiter
: aninteger()
vector indicating MCMC sampling iterationsy0
: baseline antibody level at $t=0$ ($y(t=0)$)y1
: antibody peak level (ELISA units)t1
: duration of infectionalpha
: antibody decay rate (1/days for the current longitudinal parameter sets)r
: shape factor of antibody decay