Find the maximum likelihood estimate of the incidence rate parameter
Source:R/est.incidence.R
est.incidence.Rd
This function models seroincidence using maximum likelihood estimation; that is, it finds the value of the seroincidence parameter which maximizes the likelihood (i.e., joint probability) of the data.
Arguments
- pop_data
a data.frame with cross-sectional serology data per antibody and age, and additional columns
- curve_params
a
data.frame()
containing MCMC samples of parameters from the Bayesian posterior distribution of a longitudinal decay curve model. The parameter columns must be named:antigen_iso
: acharacter()
vector indicating antigen-isotype combinationsiter
: aninteger()
vector indicating MCMC sampling iterationsy0
: baseline antibody level at $t=0$ ($y(t=0)$)y1
: antibody peak level (ELISA units)t1
: duration of infectionalpha
: antibody decay rate (1/days for the current longitudinal parameter sets)r
: shape factor of antibody decay
- noise_params
a
data.frame()
(ortibble::tibble()
) containing the following variables, specifying noise parameters for each antigen isotype:antigen_iso
: antigen isotype whose noise parameters are being specified on each rownu
: biological noiseeps
: measurement noisey.low
: lower limit of detection for the current antigen isotypey.high
: upper limit of detection for the current antigen isotype
- antigen_isos
Character vector with one or more antibody names. Values must match
pop_data
- lambda_start
starting guess for incidence rate, in years/event.
- stepmin
A positive scalar providing the minimum allowable relative step length.
- stepmax
a positive scalar which gives the maximum allowable scaled step length.
stepmax
is used to prevent steps which would cause the optimization function to overflow, to prevent the algorithm from leaving the area of interest in parameter space, or to detect divergence in the algorithm.stepmax
would be chosen small enough to prevent the first two of these occurrences, but should be larger than any anticipated reasonable step.- verbose
logical: if TRUE, print verbose log information to console
- build_graph
whether to graph the log-likelihood function across a range of incidence rates (lambda values)
- print_graph
whether to display the log-likelihood curve graph in the course of running
est.incidence()
- ...
Arguments passed on to
stats::nlm
typsize
an estimate of the size of each parameter at the minimum.
fscale
an estimate of the size of
f
at the minimum.ndigit
the number of significant digits in the function
f
.gradtol
a positive scalar giving the tolerance at which the scaled gradient is considered close enough to zero to terminate the algorithm. The scaled gradient is a measure of the relative change in
f
in each directionp[i]
divided by the relative change inp[i]
.iterlim
a positive integer specifying the maximum number of iterations to be performed before the program is terminated.
check.analyticals
a logical scalar specifying whether the analytic gradients and Hessians, if they are supplied, should be checked against numerical derivatives at the initial parameter values. This can help detect incorrectly formulated gradients or Hessians.
Value
a "seroincidence"
object, which is a stats::nlm()
fit object with extra meta-data attributes lambda_start
, antigen_isos
, and ll_graph
Examples
library(dplyr)
xs_data <- load_pop_data("https://osf.io/download//n6cp3/")
curves <- load_curve_params("https://osf.io/download/rtw5k/") %>%
filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG")) %>%
slice(1:100, .by = antigen_iso) # Reduce dataset for the purposes of this example
noise <- load_noise_params("https://osf.io/download//hqy4v/")
est1 <- est.incidence(
pop_data = xs_data %>% filter(Country == "Pakistan"),
curve_params = curves,
noise_params = noise %>% filter(Country == "Pakistan"),
antigen_isos = c("HlyE_IgG", "HlyE_IgA"),
iterlim = 5 # limit iterations for the purpose of this example
)
summary(est1)
#> # A tibble: 1 × 10
#> est.start incidence.rate SE CI.lwr CI.upr coverage log.lik iterations
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 0.1 0.142 0.00725 0.128 0.156 0.95 -2378. 4
#> # ℹ 2 more variables: antigen.isos <chr>, nlm.convergence.code <ord>