A run_mod() output
using the nepal_sees example data set as input
and stratifying by column "bldculres",
which is the diagnosis type (typhoid or
paratyphoid). Keeping only IDs "newperson", "sees_npl_1", "sees_npl_2".
Format
An S3 object of class sr_model: A dplyr::tbl_df that contains the
posterior predictive distribution of the person-specific parameters for a
"new person" with no observed data (Subject = "newperson") and posterior
distributions of the person-specific parameters for two arbitrarily-chosen
subjects ("sees_npl_1" and "sees_npl_2").
Contains 40,000 rows, 7 columns, and model attributes.
- Iteration
Number of sampling iterations: 500 iterations
- Chain
Number of MCMC chains run: 2 chains run
- Parameter
Parameter being estimated
- Iso_type
Antibody/antigen type combination being evaluated:
HlyE_IgAandHlyE_IgG- Stratification
The variable used to stratify jags model:
typhiandparatyphi- Subject
ID of subject being evaluated:
newperson,sees_npl_1,sees_npl_2- value
Estimated value of the parameter
- attributes
A list of
attributesthat summarize the jags inputs, priors, and optional jags_post mcmc object
Source
reference study: https://doi.org/10.1016/S2666-5247(22)00114-8