collect cross-sectional data
Usage
simcs.tinf(
lambda,
n_samples,
age_range,
age_fixed = NA,
antigen_isos,
n_mcmc_samples = 0,
renew_params = FALSE,
...
)Arguments
- lambda
seroconversion rate (in events/person-day)
- n_samples
number of samples n_samples (= nr of simulated records)
- age_range
age range to use for simulating data, in days
- age_fixed
age_fixed for parameter sample (age_fixed = NA for age at infection)
- antigen_isos
character vector with one or more antibody names. Values must match
curve_params.- n_mcmc_samples
when
n_mcmc_samplesis in 1:4000, a fixed posterior sample is usedwhen n_mcmc_samples = 0 a random sample is chosen
- renew_params
renew_params = TRUEgenerates a new parameter set for each infectionrenew_params = FALSEkeeps the one selected at birth, but updates baseline y0
- ...
Arguments passed on to
simresp.tinfpredparan
array()with dimensions named:antigen_isoparameterobs
Value
an array() with dimensions
n_samples, length(antigen_isos) + 1,
where rows are observations and columns are age and biomarkers y(t)