Analyze simulation results
Arguments
- data
a tibble::tbl_df with columns:
lambda.sim
,incidence.rate
,SE
,CI.lwr
,CI.upr
for example, as produced bysummary.seroincidence.by()
withlambda.sim
as a stratifying variable
Value
a sim_results
object (extends tibble::tbl_df)
Examples
# \donttest{
dmcmc <- typhoid_curves_nostrat_100
n_cores <- 2
nclus <- 20
# cross-sectional sample size
nrep <- c(50, 200)
# incidence rate in e
lambdas <- c(.05, .8)
antibodies <- c("HlyE_IgA", "HlyE_IgG")
lifespan <- c(0, 10)
dlims = rbind(
"HlyE_IgA" = c(min = 0, max = 0.5),
"HlyE_IgG" = c(min = 0, max = 0.5)
)
sim_df <- sim_pop_data_multi(
n_cores = n_cores,
lambdas = lambdas,
nclus = nclus,
sample_sizes = nrep,
age_range = lifespan,
antigen_isos = antibodies,
renew_params = FALSE,
add_noise = TRUE,
curve_params = dmcmc,
noise_limits = dlims,
format = "long"
)
cond <- tibble::tibble(
antigen_iso = c("HlyE_IgG", "HlyE_IgA"),
nu = c(0.5, 0.5), # Biologic noise (nu)
eps = c(0, 0), # M noise (eps)
y.low = c(1, 1), # low cutoff (llod)
y.high = c(5e6, 5e6)
)
ests <-
est_seroincidence_by(
pop_data = sim_df,
sr_params = dmcmc,
noise_params = cond,
num_cores = n_cores,
strata = c("lambda.sim", "sample_size", "cluster"),
curve_strata_varnames = NULL,
noise_strata_varnames = NULL,
verbose = FALSE,
build_graph = FALSE, # slows down the function substantially
antigen_isos = c("HlyE_IgG", "HlyE_IgA")
)
ests |>
summary() |>
analyze_sims()
#> # A tibble: 4 × 8
#> lambda.sim sample_size Bias Mean_Est_SE Empirical_SE RMSE Mean_CI_Width
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.05 50 3.20e-3 0.0130 0.0135 0.0135 0.0530
#> 2 0.05 200 -5.60e-4 0.00626 0.00793 0.00775 0.0248
#> 3 0.8 50 2.14e-1 0.144 0.189 0.282 0.571
#> 4 0.8 200 1.95e-1 0.0710 0.0879 0.213 0.279
#> # ℹ 1 more variable: CI_Coverage <dbl>
# }