
PHS Shared 
Compute 
Environments

For high performance 
computing



Introduction

Keith Jose

Information Systems Manager, Public Health Sciences

kljose@ucdavis.edu

530-752-8055

mailto:kljose@ucdavis.edu


Comparison Overview

Mercury
• Stand-Alone Single Server

• No Workload Manager/Scheduler

• Large Attached Storage

Shiva
• High Performance Compute Cluster

• 4 compute nodes

• Dedicated GPU node

• SLURM workload manager/scheduler use is 
required



How to request access and connect

• User accounts on both Mercury and Shiva are local to those servers. 

• You must request an account on one or both of those systems by email.

• Please send an email to kljose@ucdavis.edu and CC dmrocke@ucdavis.edu with your request. 

• Both Mercury and Shiva support SSH as the main method of connecting

Windows: Putty is a good choice 

Mac OS: Native terminal

• When using SSH, it is a command line interface in CentOS Linux. SSH connections can be made from 
any worldwide Internet connected location.

• Host IP addresses for the systems to connect with SSH are including in your account creation email. 

• SAS Studio and R Studio have Web-based interfaces. When you receive your account creation email, 
information about those Web addresses will be included. 

mailto:kljose@ucdavis.edu
mailto:dmrocke@ucdavis.edu


Connecting,  Transferring, and 
Managing Files

• When you log into either of the systems using SSH, 
you will be placed in your home directory, and on 
both Mercury and Shiva are by default protected so 
only you can read content in your home directory. 

• Your home directory is also located in the area 
where the main storage for the system exists. 

• To transfer files to your home directory, you will 
need to use SFTP, which utilizes SSH. 

• Windows: WinSCP or FileZilla are good choices for 
graphical SFTP. Bitvise is also good.

• Mac OS: Filezilla or command line using Terminal

SSH Terminal

SFTP Local SFTP Remote



Basic Linux Commands

pwd - When you first open the terminal, you are in the home directory of your user. To know which directory you are in, you can 
use the “pwd” command. It gives us the absolute path, which means the path that starts from the root. The root is the base of 
the Linux file system. 

ls - Use the "ls" command to know what files are in the directory you are in. You can see all the hidden files by using the 
command “ls -a”.

cd - Use the "cd" command to go to a directory. 

mkdir & rmdir - Use the mkdir command when you need to create a folder or a directory. Use rmdir to delete a directory. But 
rmdir can only be used to delete an empty directory. To delete a directory containing files, use rm.

passwd - To change your password. 

tar - Use tar to work with tarballs (or files compressed in a tarball archive) in the Linux command line. 

zip , unzip - Use zip to compress files into a zip archive, and unzip to extract files from a zip archive.

mv - Use the mv command to move files through the command line.

find - The find command is used to locate a file in a Linux system

chmod - Use chmod to make a file executable and to change the permissions granted to it in Linux.

man - To know more about a command and how to use it, use the man command.



Security & Restrictions

• No root / sudo access 

• SAS Studio and R Studio restricted to UCD/UCDH

• PHI/PII must be kept encrypted (at rest) – If you are working with any kind of identifiable information, please utilize 
Veracrypt to store your data, and only have the data accessible from Veracrypt while you are actively working with it. 

• Key-based authentication is encouraged – This is a public/private keypair that you can create, and you can 
configure Putty or OS X terminal to use your keypair to log in. This will disable password authentication on your 
account and greatly increase authentication security. You must keep your private key private. Information on how to 
set this up will be included in your account creation email, or you can email me kljose@ucdavis.edu and I can send 
you some steps to set this up. 

Veracrypt Compliance: 
•SO/IEC 10118-3:2004 [21] 
•FIPS 197 [3] 
•FIPS 198 [22] 
•FIPS 180-2 [14] 
•FIPS 140-2 (XTS-AES, SHA-256, SHA-512, HMAC) [25] 
•NIST SP 800-38E [24] 
•PKCS #5 v2.0 [7] 
•PKCS #11 v2.20 [23]

mailto:kljose@ucdavis.edu


Mercury



Mercury
Stand-Alone Server

Hardware

• Xeon E7 @ 2.1 GHz: Total of 96 processing cores available for computation

• 88TB of available disk storage

• 1TB of available memory

Operating System

• CentOS 7.7 (based on RHEL)



Mercury: Environment and Tools

• Install software locally, if possible

• System maintenance happens regularly, 
will notify. 

• No backups. Please plan accordingly.

Maintained Packages & Tools:

• SAS

• SAS Studio

• R 

• R Studio

• Python

• C/C++

• Vi / Emacs

• Veracrypt



Mercury: running jobs: SAS

Ensure the data you need for your job is in on the server

SAS Batch Mode: Example shell script to run a single SAS program:

mySASProgram.sh
------------------------------

#!/usr/bin/sh
dtstamp=$(date +%Y.%m.%d_%H.%M.%S)
pgmname=“./sas/code/project1/program1.sas"
logname=“./sas/code/project1/program1_$dtstamp.log"
/usr/local/SASHome/SASFoundation/9.4/sas $pgmname -log $logname

Ensure the script is executable: 
$ chmod 750 ./mySASProgram.sh

Run the script: 
$ ./mySASProgram.sh 

More information on SAS Batch Mode: https://bit.ly/2T2RNMZ

SAS Studio: SAS Studio is a Web-based version of SAS that shows a familiar user interface as PC SAS. All data you load 
or create from within SAS Studio resides on the server. You must use SFTP to transfer data to and from. SAS Studio is 
only accessible from UCD/UCDH network locations.

https://bit.ly/2T2RNMZ


Mercury: Installing R Packages

R is installed with some base packages, but likely not with everything you may need.

R packages should be installed locally in your home directory. The following is an example script that would install packages. 

install.packages.R

-------------------

pkgvec <- scan("R.pkgs.txt",what=character())

biovec <- scan("Bio.pkgs.txt",what=character())

install.packages(pkgvec,repos="http://cran.cnr.Berkeley.edu")

source("http://bioconductor.org/biocLite.R")

biocLite()

biocLite(pkgs=biovec)

where R.pkgs.txt contains the names of R packages and Bio.pkgs.txt contains the names of bioconductor packages.

Packages will reside in your home directory in ~/R/x86_64-redhat-linux-gnu-library/[R Version]



Mercury: running jobs: R

R Program Console: Just type R at your command prompt to start R. 

$ R

R Batch Mode: Specify your R script in the command. 

myScript.R
---------------------
set.seed(1) 
M<-matrix(runif(20),5,4) 
write.csv(M, file="M.csv") 

$ R CMD BATCH myScript.R

R Studio: R Studio is a Web-based version of R with GUI. Note that files you see in the Web interface reflect files on the 
server, not your local computer. You must always ensure data files or programs are on the server by copying them 
using SFTP.



Shiva 



Shiva 
Compute Cluster

Hardware

• Head/Storage Node + 4 Compute Nodes

• Xeon Gold 5118 @ 2.3 GHz on ALL compute nodes. Each compute node having 48 processing cores, for a 
total of 192 processing cores available for computation across the cluster. 

• Each compute node has 754GB of memory, providing a total of over 3TB of available memory for 
computation across the cluster. 

• 43TB of available disk storage

• GPU Node: Discrete Nvidia Tesla V100 GPU

• Normal compute nodes do not have discrete GPU

• Infiniband connected nodes for high speed CPU communications between nodes (56.25Gbps 
communication)

Operating System

• CentOS 7.7 (based on RHEL) 

• OpenHPC software stack



Shiva: Environment and Tools

• Install packages locally, if possible. 

• Ideal for parallel computing 
• OpenMPI
• Infiniband
• Discrete Nvidia Tesla V100 and Cuda Toolkit

• System maintenance happens regularly, 
will notify. 

• No backups. Please plan accordingly.

Maintained Packages & Tools:

• SLURM

• R 

• R Studio

• Python3
• mpi4py

• C/C++

• Vi / Emacs

• Veracrypt

• OpenMPI

• Infiniband

• Cuda Toolkit (GPU node)



Shiva: Architecture

shiva.ucdavis.edu
169.237.157.21

c1
GPU

c2

c3

c4

InfiniBand

Gigabit Network

• Head Node
• Storage Node (User Directories)
• Job management using SLURM

C
o

m
p

u
te

 N
o

d
es

WAN
Gb Network

10.0.0.10

10.0.0.11

10.0.0.12

10.0.0.13



Shiva: What is SLURM?

SLURM: Open source, fault-tolerant, and highly scalable cluster management and job 
scheduling system. 

You must learn the basics of SLURM to use Shiva.

All work must be submitted via SLURM. Do not run jobs on head node! 

SLURM QuickStart: https://slurm.schedmd.com/quickstart.html

Key Functions of SLURM: 

1) It allocates exclusive and/or non-exclusive access to compute nodes to users for 
some duration of time so they can perform work

2) It provides a framework for starting, executing, and monitoring work (normally a 
parallel job) on the set of allocated nodes

3) It arbitrates contention for resources by managing a queue of pending work.

https://slurm.schedmd.com/quickstart.html


Shiva: Using SLURM

Job Submission

salloc – Obtain a Slurm job 
allocation (a set of nodes), 
execute a command, and then 
release the allocation when the 
command is finished. 

sbatch – Submit a batch script to 
Slurm. 

srun – Run parallel jobs 

Simple script using srun
-------------- submit.sh

All options for srun: https://slurm.schedmd.com/srun.html

 would request one CPU for 10 minutes, along with 100 
MB of RAM, in the default queue. When started, the job 
would run a first job step srun hostname, which will launch 
the UNIX command hostname on the node on which the 
requested CPU was allocated. Then, a second job step will 
start the sleep command. Note that the --job-name 
parameter allows giving a meaningful name to the job and 
the --output parameter defines the file to which the output 
of the job must be sent. 



Shiva: Slurm Examples



Shiva: MPI / InfiniBand

Message Passing Interface

https://slurm.schedmd.com/mpi_guide.html LOTS of information here! 

Using pmix support:

$ srun –mpi=pmix –n 4 a.out

https://slurm.schedmd.com/mpi_guide.html


Shiva: MPI / InfiniBand

Quick benchmark to verify InfiniBand
kljose@shiva$ module load imb

kljose@shiva$ srun –N 2 –pty /bin/bash

kljose@c1$ prun IMB-MPI1 PingPong

Shows rate over Infiniband



Shiva: R & Slurm – Single CPU
Source: https://rcc.uchicago.edu/docs/software/environments/R/index.html

------ Rhello.sbatch

#!/bin/sh

#SBATCH --partition=broadwl

#SBATCH --tasks=1

# Load the default version of hello.

module load R

# Use R CMD BATCH to run Rhello.R.

R CMD BATCH --no-save --no-restore Rhello.R

----- Rhello.R

print("Hello World")



Shiva: R & Slurm – Multicore – Single Node
Source: https://rcc.uchicago.edu/docs/software/environments/R/index.html

-------- doParallel.sbatch

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=16

module load R

R CMD BATCH --no-save –-no-restore doParallel.R

------ doParallel.R (Requires Module doParallel)

library(doParallel)
# use the environment variable SLURM_NTASKS_PER_NODE to set the number of cores
registerDoParallel(cores=(Sys.getenv("SLURM_NTASKS_PER_NODE")))
# Bootstrapping iteration example
x <- iris[which(iris[,5] != "setosa"), c(1,5)]
iterations <- 10000 # Number of iterations to run
# Parallel version of code 
# Note the '%dopar%' instruction

parallel_time <- system.time({
r <- foreach(icount(iterations), .combine=cbind) %dopar% {
ind <- sample(100, 100, replace=TRUE)
result1 <- glm(x[ind,2]~x[ind,1], family=binomial(logit))
coefficients(result1)

}
})

# Shows the number of Parallel Workers to be used
getDoParWorkers()

# Prints the total compute time.
parallel_time["elapsed"]



Shiva: R & Slurm – MultiNode
Source: https://rcc.uchicago.edu/docs/software/environments/R/index.html

----- Rmpi.sbatch

#!/bin/sh

#SBATCH --nodes=4

#SBATCH --time=1

#SBATCH --exclusive

module load R

# The openmpi module is not loaded by default with R.

module load openmpi3

# Always use -n 1 for the Rmpi package. It spawns additional 
processes

# dynamically

mpirun -n 1 R CMD BATCH --no-save --no-restore Rmpi.R

------- Rmpi.R (Requires Module Rmpi)

library(Rmpi)

# initialize an Rmpi environment

ns <- 4

mpi.spawn.Rslaves(nslaves=ns)

# send these commands to the slaves

mpi.bcast.cmd( id <- mpi.comm.rank() )

mpi.bcast.cmd( ns <- mpi.comm.size() )

mpi.bcast.cmd( host <- mpi.get.processor.name() )

# all slaves execute this command

mpi.remote.exec(paste("I am", id, "of", ns, "running on", host))

# close down the Rmpi environment

mpi.close.Rslaves(dellog = FALSE)

mpi.exit()



Resources

Slurm: https://slurm.schedmd.com/documentation.html

OpenMPI: https://www.open-mpi.org/

Linux Reference Sheet: https://files.fosswire.com/2007/08/fwunixref.pdf

SAS Batch Mode: https://bit.ly/2T2RNMZ

R & Slurm Examples:
https://rcc.uchicago.edu/docs/software/environments/R/index.html

https://slurm.schedmd.com/documentation.html
https://www.open-mpi.org/
https://files.fosswire.com/2007/08/fwunixref.pdf
https://bit.ly/2T2RNMZ
https://rcc.uchicago.edu/docs/software/environments/R/index.html

	PHS Shared Compute Environments
	Introduction
	Comparison Overview
	How to request access and connect
	Connecting,  Transferring, and Managing Files
	Basic Linux Commands
	Security & Restrictions
	Mercury
	Mercury�Stand-Alone Server
	Mercury: Environment and Tools
	Mercury: running jobs: SAS
	Mercury: Installing R Packages
	Mercury: running jobs: R	
	Shiva 
	Shiva �Compute Cluster
	Shiva: Environment and Tools
	Shiva: Architecture
	Shiva: What is SLURM?	
	Shiva: Using SLURM
	Shiva: Slurm Examples
	Shiva: MPI / InfiniBand
	Shiva: MPI / InfiniBand
	Shiva: R & Slurm – Single CPU	�Source: https://rcc.uchicago.edu/docs/software/environments/R/index.html
	Shiva: R & Slurm – Multicore – Single Node�Source: https://rcc.uchicago.edu/docs/software/environments/R/index.html
	Shiva: R & Slurm – MultiNode�Source: https://rcc.uchicago.edu/docs/software/environments/R/index.html
	Resources

