PHS Shared

Compute
Environments

For high performance
computing

Introduction

Keith Jose

Information Systems Manager, Public Health Sciences

kljose@ucdavis.edu

530-752-8055

mailto:kljose@ucdavis.edu

Comparison Overview

Mercury Shiva

» Stand-Alone Single Server « High Performance Compute Cluster
» No Workload Manager/Scheduler * 4 compute nodes

 Large Attached Storage » Dedicated GPU node

* SLURM workload manager/scheduler use is
required

How to request access and connect

» User accounts on both Mercury and Shiva are local to those servers.
* You must request an account on one or both of those systems by email.

» Please send an email to kljose@ucdavis.edu and CC dmrocke@ucdavis.edu with your request.

« Both Mercury and Shiva support SSH as the main method of connecting
Windows: Putty is a good choice

Mac OS: Native terminal

« When using SSH, it is a command line interface in CentOS Linux. SSH connections can be made from
any worldwide Internet connected location.

* Host IP addresses for the systems to connect with SSH are including in your account creation email.

« SAS Studio and R Studio have Web-based interfaces. When you receive your account creation email,
information about those Web addresses will be included.

mailto:kljose@ucdavis.edu
mailto:dmrocke@ucdavis.edu

Connecting, Transferring, and
Managing Files

* When you log into either of the systems using SSH,
you will be placed in your home directory, and on
both Mercury and Shiva are by default protected so
only you can read content in your home directory.

* Your home directory is also located in the area
where the main storage for the system exists.

 To transfer files to your home directory, you will
need to use SFTP, which utilizes SSH.

« Windows: WinSCP or FileZilla are good choices for
graphical SFTP. Bitvise is also good.

* Mac OS: Filezilla or command line using Terminal

kljose@mercury:~

SSH Terminal

| B Mercury - mercury.ucdavis.edu - Win5CP

Local Mark Files Commands Session Options Remote Help

|:FH &3 B3 synchronize | Bl ¢ [(48 5 Queve - Transfer Settings Default

& mercury.ucdavisedu X [New Session
My documents = [2 - [[] - 4=~ RNk
T New ~

Ch\Users\kljose\Documents__CODE\Mercury\.
~

Name Size Type
i = Parent directory

0Bof 0Bin0of D

/heme/kjose/test/
=

Changed Name
2/21/2020 10:4 | v ..

0Bof0Bin0of 0

= -F- - T D & D FindFiles | &

 New -

Size Changed Rights
2/21/2020 10:42:47 AM === ===

SFTP Remote

SFTP-3

0:02:25

Basic Linux Commands

pwd - When you first open the terminal, you are in the home directory of your user. To know which directory you are in, you can
use the “pwd” command. It gives us the absolute path, which means the path that starts from the root. The root is the base of
the Linux file system.

Is - Use the "Is" command to know what files are in the directory you are in. You can see all the hidden files by using the
command “Is -a".

cd - Use the "ed"” command to go to a directory.

mkdir & rmdir - Use the mkdir command when you need to create a folder or a directory. Use rmdir to delete a directory. But
rmdir can only be used to delete an empty directory. To delete a directory containing files, use rm.

passwd - To change your password.

tar - Use tar to work with tarballs (or files compressed in a tarball archive) in the Linux command line.
zip , unzip - Use zip to compress files into a zip archive, and unzip to extract files from a zip archive.
mv - Use the mv command to move files through the command line.

find - The find command is used to locate a file in a Linux system

chmod - Use chmod to make a file executable and to change the permissions granted to it in Linux.

man - To know more about a command and how to use it, use the man command.

Security & Restrictions

* No root/ sudo access
« SAS Studio and R Studio restricted to UCD/UCDH

« PHI/PIl must be kept encrypted (at rest) - If you are working with any kind of identifiable information, please utilize
Veracrypt to store your data, and only have the data accessible from Veracrypt while you are actively working with it.

+ Key-based authentication is encouraged - This is a public/private keypair that you can create, and you can
configure Putty or OS X terminal to use your keypair to log in. This will disable password authentication on your
account and greatly increase authentication security. You must keep your private key private. Information on how to
set this up will be included in your account creation email, or you can email me kljose@ucdavis.edu and | can send
you some steps to set this up.

Veracrypt Compliance:

*SO/IEC 10118-3:2004 [21]

*FIPS 197 [3]

*FIPS 198 [22]

*FIPS 180-2 [14]

*FIPS 140-2 (XTS-AES, SHA-256, SHA-512, HMAC) [25]
*NIST SP 800-38E [24]

*PKCS #5 v2.0 [7]

*PKCS #11 v2.20 [23]

mailto:kljose@ucdavis.edu

Mercury

Mercury

Stand-Alone Server

Hardware

« Xeon E7 @ 2.1 GHz: Total of 96 processing cores available for computation
- 88TB of available disk storage

« 1TB of available memory

Operating System

¢ CentOS 7.7 (based on RHEL)

Mercury: Environment and Tools

* Install software locally, if possible

« System maintenance happens regularly,
will notify.

* No backups. Please plan accordingly.

Maintained Packages & Tools:
« SAS

SAS Studio
* R

R Studio
Python
C/C++

Vi/ Emacs
Veracrypt

Mercury: running jobs: SAS

Ensure the data you need for your job is in on the server
SAS Batch Mode: Example shell script to run a single SAS program:
mySASProgram.sh

#!/usr/bin/sh

dtstamp=$(date +%Y.%m.%d %H.%M.%S)

pgmname=‘“. /sas/code/projectl/programl.sas"

logname=*. /sas/code/projectl/programl_$dtstamp.log"
/usr/local/SASHome/SASFoundation/9.4/sas $pgmname -log $logname

Ensure the script is executable:
$ chmod 750 ./mySASProgram.sh

Run the script:
$./mySASProgram.sh

More information on SAS Batch Mode: https://bit.ly/2T2RNMZ

SAS Studio: SAS Studio is a Web-based version of SAS that shows a familiar user interface as PC SAS. All data you load
or create from within SAS Studio resides on the server. You must use SFTP to transfer data to and from. SAS Studio is
only accessible from UCD/UCDH network locations.

https://bit.ly/2T2RNMZ

Mercury: Installing R Packages

R is installed with some base packages, but likely not with everything you may need.

R packages should be installed locally in your home directory. The following is an example script that would install packages.

install.packages.R

pkgvec <- scan("R.pkgs.txt",what=character())

biovec <- scan("Bio.pkgs.txt",what=character())
install.packages(pkgvec,repos="http://cran.cnr.Berkeley.edu")
source("http://bioconductor.org/biocLite.R")

biocLite()

biocLite(pkgs=biovec)

where R.pkgs.txt contains the names of R packages and Bio.pkgs.txt contains the names of bioconductor packages.

Packages will reside in your home directory in ~/R/x86_64-redhat-linux-gnu-library/[R Version]

Mercury: running jobs: R

R Program Console: Just type R at your command prompt to start R.
$R
R Batch Mode: Specify your R script in the command.

myScript.R

set.seed(1)
M<-matrix(runif(20),5,4)
write.csv(M, file="M.csv")

$ R CMD BATCH myScript.R

R Studio: R Studio is a Web-based version of R with GUI. Note that files you see in the Web interface reflect files on the

server, not your local computer. You must always ensure data files or programs are on the server by copying them
using SFTP.

Shiva

Shiva

Compute Cluster

Hardware

« Head/Storage Node + 4 Compute Nodes

« Xeon Gold 5118 @ 2.3 GHz on ALL compute nodes. Each compute node having 48 processing cores, for a
total of 192 processing cores available for computation across the cluster.

« Each compute node has 754GB of memory, providing a total of over 3TB of available memory for
computation across the cluster.

- 43TB of available disk storage
* GPU Node: Discrete Nvidia Tesla V100 GPU
* Normal compute nodes do not have discrete GPU

* Infiniband connected nodes for high speed CPU communications between nodes (56.25Gbps
communication)

Operating System
¢ CentOS 7.7 (based on RHEL)
« OpenHPC software stack

Shiva: Environment and Tools

* Install packages locally, if possible. Maintained Packages & Tools:
* |deal for parallel computing « SLURM
* OpenMPI e R
* Infiniband .
« Discrete Nvidia Tesla V100 and Cuda Toolkit * RStudio
« System maintenance happens regularly, * Python3
will notify. * mpidpy
* No backups. Please plan accordingly. « C/CH++
* Vi/ Emacs
* Veracrypt
* OpenMPI
* Infiniband

e Cuda Toolkit (GPU node)

Shiva: Architecture

c1
GPU

10.0.0.10

c2

10.0.0.11

c3

10.0.0.12

Compute Nodes

c4

10.0.0.13

LI I T

InfiniBand

Gigabit Network

Gb Network

shiva.ucdavis.edu
169.237.157.21

Head Node
Storage Node (User Directories)
Job management using SLURM

Shiva: What is SLURM?

SLURM: Open source, fault-tolerant, and highly scalable cluster management and job
scheduling system.

You must learn the basics of SLURM to use Shiva.

All work must be submitted via SLURM. Do not run jobs on head node!
SLURM QuickStart: https://slurm.schedmd.com/quickstart.html
Key Functions of SLURM:

1) It allocates exclusive and/or non-exclusive access to compute nodes to users for
some duration of time so they can perform work

2) It provides a framework for starting, executing, and monitoring work (normally a
parallel job) on the set of allocated nodes

3) It arbitrates contention for resources by managing a queue of pending work.

https://slurm.schedmd.com/quickstart.html

Shiva: Using SLURM

Job Submission

salloc - Obtain a Slurm job
allocation (a set of nodes),
execute a command, and then
release the allocation when the
command is finished.

sbatch - Submit a batch script to
Slurm.

srun - Run parallel jobs

Slmple SCI’Ipt using srun ¢ o4 request one CPU for 10 minutes, along with 100

______________ submit.sh

#!/bin/bash

#

#SBATCH --job-name=test
#S5BATCH --output=res.txt
#

#5BATCH --ntasks=1
#SBATCH --time=18:88
F5BATCH --mem-per-cpu=188

srun hostname
srun sleep 68

MB of RAM, in the default queue. When started, the job
would run a first job step srun hostname, which will launch
the UNIX command hostname on the node on which the
requested CPU was allocated. Then, a second job step will
start the sleep command. Note that the --job-name
parameter allows giving a meaningful name to the job and
the --output parameter defines the file to which the output
of the job must be sent.

-n, --ntasks=<number>
Specify the number of tasks to run. Request that srun allocate resources for
ntasks tasks. The default is one task per node, but note that the --cpus-per-
task option will change this default. This option applies to job and step
allocations.

All options for srun: https://slurm.schedmd.com/srun.htm|

Shiva: Slurm Examples

adev@: cat my.script
#!/bin/sh

#SBATCH ——-time=1
/bin/hostname

srun -1 /bin/hostname
srun —-L /bin/pwd

adev@: sbatch -n4 -w "adev[9-18]" -o my.stdout my.script

sbatch: Submitted batch job 469

adev@: cat my.stdout
adev9

0: adevd

1: adev9

2: adevl®

3: adevlo

0: /home/jette
1: /home/jette
2: /home/fjette
3: /home/jette

Shiva: MPI1 / InfiniBand

Message Passing Interface

[kljosefshiva ~]% srun —-mpi=list

https://slurm.schedmd.com/mpi _guide.htm| € LOTS of information here!
Using pmix support:

$ srun -mpi=pmix -n 4 a.out

https://slurm.schedmd.com/mpi_guide.html

Shiva: MPI1 / InfiniBand

Quick benchmark to verify InfiniBand

kljose@shiva$ module load imb
kljose@shiva$ srun -N 2 -pty /bin/bash
kljose@cl$ prun IMB-MPI1 PingPong

Shows rate over Infiniband =

Shiva: R & Slurm - Single CPU

Source: https://rcc.uchicago.edu/docs/software/environments/R/index.html

------ Rhello.sbatch
print("Hello World")
#!/bin/sh
#SBATCH --partition=broadwl
#SBATCH --tasks=1
Load the default version of hello.
module load R
Use R CMD BATCH to run Rhello.R.

R CMD BATCH --no-save --no-restore Rhello.R

Shiva: R & Slurm - Multicore - Single Node

Source: https://rcc.uchicago.edu/docs/software/environments/R/index.html

________ doParallel.sbatch ------ doParallel.R (Requires Module doParallel)
#!/bin/bash Library(doParallel)

use the environment variable SLURM_NTASKS_PER_NODE to set the number of cores
#SBATCH --nodes=1 registerDoParallel (cores=(Sys.getenv("SLURM_NTASKS_PER_NODE")))

Bootstrapping iteration example

X <- iris[which(iris[,5] != "setosa"), c(1,5)]
iterations <- 10000 # Number of iterations to run
Parallel version of code

R CMD BATCH --no-save --no-restore doParallel.R # Note the 'Zdopar%' instruction

#SBATCH --ntasks-per-node=16

module load R

parallel_time <- system.time({
r <- foreach(icount(iterations), .combine=cbind) %dopar% {
ind <- sample(100, 100, replace=TRUE)
resultl <- glm(x[ind,2]~x[1nd,1], family=binomial(logit))
coefficients(resultl)
}
H

Shows the number of Parallel Workers to be used
getDoParWorkers ()

Prints the total compute time.
parallel_time["elapsed"]

Shiva: R & Slurm - MultiNode

Source: https://rcc.uchicago.edu/docs/software/environments/R/index.html

————— Rmp1i.sbatch ------- Rmpi.R (Requires Module Rmp1i)

#1/bin/sh Library(Rmpi)

#SBATCH --nodes=4 # initialize an Rmpi environment

#SBATCH --time=1 ns <- 4

#SBATCH --exclusive mpi.spawn.Rslaves(nslaves=ns)

module Lload R # send these commands to the slaves

The openmpi module is not Loaded by default with R. mpi.bcast.cmd(id <- mpi.comm.rank())

module lLoad openmpi3 mpi.bcast.cmd(ns <- mpi.comm.size())

Always use -n 1 for the Rmpi package. It spawns additional mpi.bcast.cmd(host <- mpi.get.processor.name())
processes

all slaves execute this command

dynamicall
Y Y mpi.remote.exec(paste("I am", id, "of", ns, "running on", host))

mpirun -n 1 R CMD BATCH --no-save --no-restore Rmpi.R . .
close down the Rmpi environment
mpi.close.Rslaves(dellog = FALSE)

mpi.exit()

I Resources

Slurm: https://slurm.schedmd.com/documentation.html

OpenMPI: https://www.open-mpi.org/

Linux Reference Sheet: https://files.fosswire.com/2007/08/fwunixref.pdf

SAS Batch Mode: https://bit.ly/2T2RNMZ

R & Slurm Examples:
https://rcc.uchicago.edu/docs/software/environments/R/index.html

https://slurm.schedmd.com/documentation.html
https://www.open-mpi.org/
https://files.fosswire.com/2007/08/fwunixref.pdf
https://bit.ly/2T2RNMZ
https://rcc.uchicago.edu/docs/software/environments/R/index.html

	PHS Shared Compute Environments
	Introduction
	Comparison Overview
	How to request access and connect
	Connecting, Transferring, and Managing Files
	Basic Linux Commands
	Security & Restrictions
	Mercury
	Mercury�Stand-Alone Server
	Mercury: Environment and Tools
	Mercury: running jobs: SAS
	Mercury: Installing R Packages
	Mercury: running jobs: R	
	Shiva
	Shiva �Compute Cluster
	Shiva: Environment and Tools
	Shiva: Architecture
	Shiva: What is SLURM?	
	Shiva: Using SLURM
	Shiva: Slurm Examples
	Shiva: MPI / InfiniBand
	Shiva: MPI / InfiniBand
	Shiva: R & Slurm – Single CPU	�Source: https://rcc.uchicago.edu/docs/software/environments/R/index.html
	Shiva: R & Slurm – Multicore – Single Node�Source: https://rcc.uchicago.edu/docs/software/environments/R/index.html
	Shiva: R & Slurm – MultiNode�Source: https://rcc.uchicago.edu/docs/software/environments/R/index.html
	Resources

