
UCD-SeRG Lab Manual

Last updated: 2026-02-02

Contents

1 Welcome to UCD-SeRG! 1
1.1 About the lab . 1
1.2 About this lab manual . 1

2 Culture and conduct 2
2.1 Lab culture . 2
2.2 Diversity, equity, and inclusion . 2
2.3 Protecting human subjects . 2
2.4 Authorship . 3

3 Communication and coordination 4
3.1 Microsoft Teams . 4
3.2 Email . 4
3.3 Task Management . 4
3.4 Google Drive . 5
3.5 UC Davis Box and SharePoint . 5
3.6 Meetings . 5
3.7 Code Review . 5

4 Reproducibility 6
4.1 What is the reproducibility crisis? . 6
4.2 Study design . 6
4.3 Register study protocols . 7
4.4 Write and register pre-analysis plans . 7
4.5 Create reproducible workflows . 7
4.6 Process and analyze data with internal replication and masking 8
4.7 Use reporting checklists with manuscripts 8
4.8 Publish preprints . 8
4.9 Publish data (when possible) and replication scripts 8

5 Code repositories 9
5.1 Package Structure . 9
5.2 .Rproj files . 14
5.3 Organizing the data-raw folder . 14

6 R Coding Practices 17
6.1 Lab Protocols for Code and Data . 17
6.2 Essential R Package Development Tools . 17
6.3 Complete Package Development Workflow 22
6.4 Organizing scripts . 25
6.5 Testing Requirements . 25
6.6 Benchmarking . 26
6.7 Iterative Operations . 36
6.8 Reading and Saving Data . 37

ii

Contents

6.9 Version Control and Collaboration . 38
6.10 Quality Assurance Checklist . 38
6.11 Automated Code Styling . 39
6.12 Documenting your code . 40
6.13 Object naming . 44
6.14 Function calls . 44
6.15 The here package . 45
6.16 Reading/Saving Data . 45
6.17 Integrating Box and Dropbox . 46
6.18 Tidyverse . 47
6.19 Core Tidyverse Packages . 47
6.20 Base R to Tidyverse Translation . 49
6.21 Programming with Tidyverse . 50
6.22 Coding with R and Python . 51
6.23 Repeating analyses with different variations 51
6.24 Reviewing Code . 54
6.25 Constructing Pull Requests . 54
6.26 Reviewing Pull Requests . 56
6.27 Creating a Pull Request Template . 59
6.28 Getting Help with Code . 60
6.29 Additional Resources . 60

7 Continuous Integration 63
7.1 Understanding GitHub Actions . 63
7.2 Setting Up GitHub Actions . 63
7.3 How GitHub Actions Workflows Work . 64
7.4 Workflow Files and Security . 64
7.5 Troubleshooting Failed Workflows . 65
7.6 Pull Request Comment Automation . 65
7.7 Additional Resources . 69

8 R Code Style 70
8.1 General Principles . 70
8.2 Function Structure and Documentation . 70
8.3 Comments . 71
8.4 Line Breaks and Formatting . 72
8.5 Markdown and Quarto Formatting . 74
8.6 Messaging and User Communication . 74
8.7 Package Code Practices . 75
8.8 Tidyverse Replacements . 75
8.9 The here Package . 75
8.10 Object Naming . 76
8.11 Automated Tools for Style and Project Workflow 77
8.12 Additional Resources . 80

9 Big data 81
9.1 The data.table package . 81
9.2 Using downsampled data . 81
9.3 Optimal RStudio set up . 81

10 Data masking 83
10.1 General Overview . 83

iii

Contents

10.2 Technical Overview . 84

11 Quarto 87
11.1 Introduction . 87
11.2 Quarto Basics . 88
11.3 Building Quarto Books . 91
11.4 Quarto Profiles . 94
11.5 Advanced Features . 95
11.6 Mermaid Diagrams . 98
11.7 Additional Resources . 101

12 Github 102
12.1 Basics . 102
12.2 GitHub Education and Copilot Access . 102
12.3 Github Desktop . 104
12.4 Git Branching . 104
12.5 Example Workflow . 104
12.6 Commonly Used Git Commands . 105
12.7 How often should I commit? . 106
12.8 Repeated Amend Workflow . 106
12.9 What should be pushed to Github? . 107
12.10Customizing How Files Appear on GitHub 107

13 Unix 110
13.1 Basics . 110
13.2 Syntax for both Mac/Windows . 111
13.3 Running Bash Scripts . 113
13.4 Running Rscripts in Windows . 113
13.5 Checking tasks and killing jobs . 114
13.6 Running big jobs . 114

14 Reproducible Environments 118
14.1 Package Version Control with renv . 118

15 Code Publication 121
15.1 Checklist overview . 121
15.2 Fill out file headers . 121
15.3 Clean up comments . 121
15.4 Document functions . 121
15.5 Remove deprecated filepaths . 122
15.6 Ensure project runs via bash . 122
15.7 Complete the README . 122
15.8 Clean up feature branches . 124
15.9 Create Github release . 124

16 Data Publication 125
16.1 Overview . 125
16.2 Removing PHI . 126
16.3 Create public IDs . 127
16.4 Create a data repository . 128
16.5 Edit and test analysis scripts . 129
16.6 Create a public GitHub page for public scripts 129

iv

Contents

16.7 Go live . 130

17 High-performance computing (HPC) 131
17.1 UC Davis Computing Resources . 131
17.2 Getting started with SLURM clusters . 131
17.3 Moving files to the cluster . 133
17.4 Installing packages on the cluster . 133
17.5 Testing your code . 134
17.6 Storage & group storage access . 136
17.7 Running big jobs . 137

18 Working with AI 139
18.1 Responsibility for validation . 139
18.2 Disclosure of AI use . 139
18.3 Attribution of sources . 140
18.4 Using AI for Journal Articles . 140
18.5 Coding Agents . 142

19 Checklists 171
19.1 Pre-analysis plan checklist . 171
19.2 Code checklist . 171
19.3 Manuscript checklist . 171
19.4 Figure checklist . 172

20 Resources 174
20.1 Resources for R . 174
20.2 Resources for Git & Github . 175
20.3 Resources for Python . 175
20.4 Resources for Julia . 176
20.5 Scientific figures . 176
20.6 Writing . 176
20.7 Presentations . 176
20.8 Professional advice . 176
20.9 Funding . 177
20.10Ethics and global health research . 177

21 Professional Development 178
21.1 Mentoring Philosophy . 178
21.2 Individual Development Plans . 178
21.3 Presentations and Conferences . 178
21.4 Scientific Figures . 179
21.5 Grant Writing . 179
21.6 PhD Dissertation Requirements . 180
21.7 Teaching and Outreach . 181
21.8 Networking . 182

22 Writing 183
22.1 Writing to Clarify Your Thinking . 183

23 Manuscript Preparation and Publication 184
23.1 Publication Process . 184
23.2 Responding to Peer Review . 184

v

Contents

23.3 Preprints and Open Access . 185
23.4 Reporting Checklists . 185
23.5 Manuscript Checklist . 186
23.6 Scientific Writing: Claims and Evidence . 186

References 188

Appendices 191

Copilot Instructions File 191

Copilot Setup Steps File 192

Document Generation Metadata 193

vi

1 Welcome to UCD-SeRG!

Adapted by UCD-SeRG team from original by Jade Benjamin-Chung1

1.1 About the lab

Welcome to the Seroepidemiology Research Group (SeRG) at the University of California,
Davis, led by Drs. Kristen Aiemjoy and Ezra Morrison. Accurate methods to measure
infectious disease burden are essential for guiding public health decisions, yet many infectious
diseases remain under-recognized due to limited diagnostics and costly, resource-intensive
surveillance systems. Our work addresses this gap by developing seroepidemiologic methods
to characterize infection burden in populations. Currently, we focus on enteric fever
(Salmonella Typhi and Paratyphi), Scrub Typhus (Orientia tsutsugamushi), Melioidosis
(Burkholderia pseudomallei), Shigella (Shigella spp.), and Cholera (Vibrio cholerae). We are
supported by the US National Institutes of Health, the Bill and Melinda Gates Foundation,
and the Department of Defense, and collaborate with partners around the world. To learn
more about the lab, visit ucdserg.ucdavis.edu2.

1.2 About this lab manual

This lab manual covers our communication strategy, code of conduct, and best practices
for reproducibility of computational workflows. It is a living document that is updated
regularly.

This manual is a fork of the Benjamin-Chung Lab Manual (Benjamin-Chung et al. 2024),
adapted for UCD-SeRG. We are grateful to Dr. Jade Benjamin-Chung and her team for
developing and openly sharing their excellent lab manual. You can view the original manual
at jadebc.github.io/lab-manual3. Original contributors include Jade Benjamin-Chung,
Kunal Mishra, Stephanie Djajadi, Nolan Pokpongkiat, Anna Nguyen, Iris Tong, and Gabby
Barratt Heitmann.

Feel free to draw from this manual (and please cite it if you do!).

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 Interna-
tional License (“Creative Commons Attribution-NonCommercial 4.0 International License,”
n.d.).

1https://jadebc.github.io/lab-manual/index.html
2https://ucdserg.ucdavis.edu
3https://jadebc.github.io/lab-manual/index.html

1

https://jadebc.github.io/lab-manual/index.html
https://ucdserg.ucdavis.edu
https://jadebc.github.io/lab-manual/index.html

2 Culture and conduct

Adapted by UCD-SeRG team from original by Jade Benjamin-Chung1

2.1 Lab culture

We are committed to a lab culture that is collaborative, supportive, inclusive, open, and
free from discrimination and harassment.

We encourage students / staff of all experience levels to respectfully share their honest
opinions and ideas on any topic. Our group has thrived upon such respectful honest input
from team members over the years, and this document is a product of years of student and
staff input (and even debate) that has gradually improved our productivity and overall
quality of our work.

2.2 Diversity, equity, and inclusion

UCD-SeRG recognizes the importance of and is committed to cultivating a culture of diver-
sity, equity, and inclusion. This means being a safe, supportive, and anti-racist environment
in which students from diverse backgrounds are equally and inclusively supported in their
education and training. Diversity takes many forms, and includes, but is not limited to,
differences in race, ethnicity, gender, sexuality, socioeconomic status, religion, disability,
and political affiliation.

2.3 Protecting human subjects

All lab members must complete CITI Human Subjects Biomedical Group 12 training and
share their certificate with the lab leadership. Team members will be added to relevant
Institutional Review Board protocols prior to their start date to ensure they have permission
to work with identifiable datasets.

One of the most relevant aspects of protecting human subjects in our work is maintaining
confidentiality. For students supporting our data science efforts, in practice this means:

• Be sure to understand and comply with project-specific policies about where data
can be saved, particularly if the data include personal identifiers.

• Do not share data with anyone without permission, including to other members of the
group, who might not be on the same IRB protocol as you (check with lab leadership
first).

1https://jadebc.github.io/lab-manual/culture-and-conduct.html
2https://research.ucdavis.edu/policiescompliance/irb-admin/education/

2

https://jadebc.github.io/lab-manual/culture-and-conduct.html
https://research.ucdavis.edu/policiescompliance/irb-admin/education/

2 Culture and conduct

Remember, data that looks like it does not contain identifiers to you might still be classified
as data that requires special protection by our IRB or under HIPAA, so always proceed with
caution and ask for help if you have any concerns about how to maintain study participant
confidentiality.

2.4 Authorship

We adhere to the ICMJE Definition of authorship3 (International Committee of Medical
Journal Editors, n.d.) and are happy for team members who meet the definition of authorship
to be included as co-authors on scientific manuscripts. To qualify for authorship, individuals
must meet all four criteria:

1. Substantial contributions to conception/design, or acquisition/analysis/interpretation
of data

2. Drafting the work or revising it critically for important intellectual content
3. Final approval of the version to be published
4. Agreement to be accountable for all aspects of the work

Authorship practices:

• First authorship: Typically goes to the person who led the work
• Corresponding author: Usually the PI, unless otherwise agreed
• Co-authorship: Determined by substantial intellectual contributions
• Author order: Should be discussed and agreed upon by all authors
• Acknowledgments: For contributions that don’t meet authorship criteria

Authorship should be discussed early in a project and revisited as the work evolves to
ensure transparency and fairness. We encourage using the CRediT Taxonomy4 to document
specific author contributions.

3http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-
and-contributors.html

4https://credit.niso.org/

3

http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
https://credit.niso.org/

3 Communication and coordination

Adapted by UCD-SeRG team from original by Jade Benjamin-Chung1

One benefit of the academic environment is its schedule flexibility and autonomy. This
means that lab members may choose to work in the early morning, afternoon, evening, or
weekends. That said, we do not expect lab members to respond outside of normal business
hours (unless there are special circumstances).

3.1 Microsoft Teams

• Use Microsoft Teams for scheduling, coding related questions, quick check ins, etc. If
your Teams message exceeds 200 words, it might be time to use email.

• Use channels instead of direct messages unless you need to discuss something private.
• Please make an effort to respond to messages that mention you (e.g., @username) as

quickly as possible and always within 24 hours.
• If you are unusually busy (e.g., taking MCAT/GRE, taking many exams) or on

vacation please alert the team in advance so we can expect you not to respond at
all / as quickly as usual and also set your status in Teams (e.g., it could say “On
vacation”) so we know not to expect to see you online.

• Please thread messages in Teams as much as possible.
• Don’t wait for meetings to ask questions. As soon as a question comes up, write it

out in Teams. This benefits both you (by clarifying your thinking, as discussed in
Chapter 22) and the team (by getting the conversation started earlier).

3.2 Email

• Use email for longer messages (>200 words) or messages that merit preservation.
• Generally, strive to respond within 24 hours hours. As noted above, if you are

unusually busy or on vacation please alert the team in advance so we can expect you
not to respond at all / as quickly as usual.

3.3 Task Management

We use a combination of tools to track and manage project tasks:

• GitHub Issues and Projects: For code-related tasks, feature requests, and bug
tracking. Lab leadership will assign issues and organize them in GitHub Projects.
Issues are prioritized within projects, and you can track your assigned tasks there.

1https://jadebc.github.io/lab-manual/communication-and-coordination.html

4

https://jadebc.github.io/lab-manual/communication-and-coordination.html

3 Communication and coordination

• Microsoft To-Do and other M365 task tracking tools: For general lab tasks and
personal task management. Lab leadership may assign tasks through these tools,
which integrate with Microsoft Teams.

• Generally, strive to complete assigned tasks by the date listed.
• Use checklists to break down tasks into smaller chunks. Sometimes leadership will

create these for you, but you can also add them yourself.
• Update task status as you make progress so the team can stay coordinated.

3.4 Google Drive

• We mostly use Google Drive to create shared documents with longer descriptions of
tasks. These documents may be linked to in GitHub Issues or other task tracking tools.
Lab leadership often shares these with the whole team since tasks are overlapping,
and even if a task is assigned to one person, others may have valuable insights.

3.5 UC Davis Box and SharePoint

• Human subjects data for research studies are generally stored in UC Davis Box or
SharePoint. Please check with lab leadership about whether there are special storage
and transfer requirements for the datasets you are working with for each study.

• You can access Box via your UC Davis credentials. For more information, visit UC
Davis Box Support2.

• SharePoint is also used for collaborative document storage and team file sharing.
Access SharePoint through your UC Davis Microsoft 365 account.

3.6 Meetings

• Our meetings start on the hour.
• If you are going to be late, please send a message in our Teams channel.
• If you are regularly not able to come on the hour, notify the team and we might

choose the modify the agenda order or the start time.

3.7 Code Review

When submitting code to or reviewing code from colleagues, use best practices to provide
and receive constructive feedback:

• Tidyverse code review principles3 (Tidyverse Team 2023): Best practices for reviewing
R code, including what to look for and how to provide constructive feedback.

2https://servicehub.ucdavis.edu/servicehub?id=ucd_kb_article&sysparm_article=KB0000184
3https://code-review.tidyverse.org/

5

https://servicehub.ucdavis.edu/servicehub?id=ucd_kb_article&sysparm_article=KB0000184
https://code-review.tidyverse.org/

4 Reproducibility

Adapted by UCD-SeRG team from original by Jade Benjamin-Chung1

Our lab adopts the following practices to maximize the reproducibility of our work.

1. Design studies with appropriate methodology and adherence to best practices in
epidemiology and biostatistics

2. Register study protocols
3. Write and register pre-analysis plans
4. Create reproducible workflows
5. Process and analyze data with internal replication and masking
6. Use reporting checklists with manuscripts
7. Publish preprints
8. Publish data (when possible) and replication scripts

4.1 What is the reproducibility crisis?

In the past decade, an increasing number of studies have found that published study findings
could not be reproduced. Researchers found that it was not possible to reproduce estimates
from published studies: 1) with the same data and same or similar code and 2) with newly
collected data using the same (or similar) study design. These “failures” of reproducibility
were frequent enough and broad enough in scope, occurring across a range of disciplines
(epidemiology, psychology, economics, and others) to be deeply troubling. Program and
policy decisions based on erroneous research findings could lead to wasted resources, and
at worst, could harm intended beneficiaries. This crisis has motivated new practices in
reproducibility, transparency, and openness. Our lab is committed to adopting these best
practices, and much of the remainder of the lab manual focuses on how to do so.

Recommended readings on the “reproducibility crisis”:

• Nuzzo R. How scientists fool themselves – and how they can stop (Nuzzo 2015)

• Stoddart C. Is there a reproducibility crisis in science? (Stoddart 2019)

• Munafò MR, et al. A manifesto for reproducible science (Munafò et al. 2017)

4.2 Study design

Appropriate study design is beyond the scope of this lab manual and is something trainees
develop through their coursework and mentoring.

1https://jadebc.github.io/lab-manual/reproducibility.html

6

https://jadebc.github.io/lab-manual/reproducibility.html

4 Reproducibility

4.3 Register study protocols

We register all randomized trials on clinicaltrials.gov, and in some cases register observational
studies as well.

4.4 Write and register pre-analysis plans

We write pre-analysis plans for most original research projects that are not exploratory in
nature, although in some cases, we write pre-analysis plans for exploratory studies as well.
The format and content of pre-analysis plans can vary from project to project. Here is an
example of one: https://osf.io/tgbxr/. Generally, these include:

1. Brief background on the study (a condensed version of the introduction section of the
paper)

2. Hypotheses / objectives
3. Study design
4. Description of data
5. Definition of outcomes
6. Definition of interventions / exposures
7. Definition of covariates
8. Statistical power calculation
9. Statistical analysis:

• Type of model
• Covariate selection / screening
• Standard error estimation method
• Missing data analysis
• Assessment of effect modification / subgroup analyses
• Sensitivity analyses
• Negative control analyses

4.5 Create reproducible workflows

Reproducible workflows allow a user to reproduce study estimates and ideally figures and
tables with a “single click”. In practice, this typically means running a single bash script
that sources all replication scripts in a repository. These replication scripts complete data
processing, data analysis, and figure/table generation. The following chapters provide
detailed guidance on this topic:

• Chapter 5: Code repositories
• Chapter 6: Coding practices
• Chapter 7: Coding style
• Chapter 8: Code publication
• Chapter 9: Working with big data
• Chapter 10: Github
• Chapter 11: Unix

7

clinicaltrials.gov
https://osf.io/tgbxr/

4 Reproducibility

For additional learning resources on reproducible research practices, see the UC Davis
DataLab workshop on reproducible research2.

4.6 Process and analyze data with internal replication and
masking

See my video on this topic: https://www.youtube.com/watch?v=WoYkY9MkbRE

4.7 Use reporting checklists with manuscripts

Using reporting checklists helps ensure that peer-reviewed articles contain the information
needed for readers to assess the validity of your work and/or attempt to reproduce it. A
collection of reporting checklists is available from the EQUATOR Network (“EQUATOR
Network: Enhancing the QUAlity and Transparency of Health Research,” n.d.).

4.8 Publish preprints

A preprint is a scientific manuscript that has not been peer reviewed. Preprint servers create
digital object identifiers (DOIs) and can be cited in other articles and in grant applications.
Because the peer review process can take many months, publishing preprints prior to or
during peer review enables other scientists to immediately learn from and build on your
work. Importantly, NIH allows applicants to include preprint citations in their biosketches.
In most cases, we publish preprints on medRxiv (“medRxiv: The Preprint Server for Health
Sciences,” n.d.).

4.9 Publish data (when possible) and replication scripts

Publishing data and replication scripts allows other scientists to reproduce your work and
to build upon it. We typically publish data on the Open Science Framework (“Open Science
Framework,” n.d.), share links to Github3 repositories, and archive code on Zenodo4.

2https://github.com/ucdavisdatalab/workshop_reproducible_research
3github.com
4zenodo.org

8

https://www.youtube.com/watch?v=WoYkY9MkbRE
https://github.com/ucdavisdatalab/workshop_reproducible_research
github.com
zenodo.org

5 Code repositories

Adapted by UCD-SeRG team from original by Kunal Mishra, Jade Benjamin-Chung, and
Stephanie Djajadi1

Each study has at least one code repository that typically holds R code, shell scripts with
Unix code, and research outputs (results .RDS files, tables, figures). Repositories may also
include datasets. This chapter outlines how to organize these files. Adhering to a standard
format makes it easier for us to efficiently collaborate across projects.

UCD-SeRG projects use R package structure for most R-based work. This provides benefits
for reproducibility, collaboration, and code quality even for analysis-only projects.

5.1 Package Structure

All R projects in our lab should be structured as R packages, even if they are
primarily analysis projects and not intended for distribution on CRAN or Bioconductor.
This standardized structure provides numerous benefits:

5.1.1 Why Use R Package Structure?

1. Organized code: Clear separation of functions (R/), documentation (man/), tests
(tests/), data (data/), and vignettes/analyses

2. Dependency management: DESCRIPTION file explicitly declares all package depen-
dencies and version restrictions, which simplifies installing those dependencies.

3. Automatic documentation: roxygen2 generates help files from inline comments
4. Built-in testing: testthat framework integrates seamlessly with package structure
5. Code quality: Tools like devtools::check() and lintr enforce best practices
6. Reproducibility: Package structure makes it easy to share and reproduce analyses
7. Reusable functions: Decompose complex analyses into well-documented, testable

functions
8. Version control: Track changes to code, documentation, and data together

5.1.2 Basic Package Structure

myproject/
��� DESCRIPTION # Package metadata and dependencies
��� NAMESPACE # Auto-generated, don't edit manually
��� R/ # All R functions (reusable code)
� ��� analysis_functions.R
� ��� data_prep.R
� ��� plotting.R

1https://jadebc.github.io/lab-manual/code-repositories.html

9

https://jadebc.github.io/lab-manual/code-repositories.html

5 Code repositories

��� man/ # Auto-generated documentation
��� tests/
� ��� testthat/ # Unit tests
��� data/ # Processed data objects (.rda files)
��� data-raw/ # Raw data and data processing scripts
� ��� 0-prep-data.sh # Shell scripts for data preparation
� ��� process_survey_data.R
� ��� clean_lab_results.R
��� vignettes/ # Long-form documentation
� ��� intro.qmd # Main vignettes (shipped with package)
� ��� tutorial.qmd
� ��� articles/ # Website-only articles (not shipped)
� ��� advanced-topics.qmd
� ��� case-studies.qmd
��� inst/ # Additional files to include in package
� ��� extdata/ # External data files and .RDS results
� � ��� analysis_results.rds
� � ��� processed_data.rds
� ��� output/ # Figure and table outputs
� � ��� figures/
� � � ��� fig1.pdf
� � � ��� fig2.png
� � ��� tables/
� � ��� table1.csv
� � ��� table2.xlsx
� ��� analyses/ # Analyses using restricted data (see below)
��� .Rproj # RStudio project file

5.1.3 Where to Place Analysis Files

5.1.3.1 Vignettes vs Articles

Vignettes (vignettes/*.qmd): - Shipped with the package when installed - Ac-
cessible via vignette() and browseVignettes() in R - Displayed on CRAN - Built at
package build time - Use for core package documentation and tutorials - Created with
usethis::use_vignette("name")

Articles (vignettes/articles/*.qmd): - Website-only (not shipped with the package) -
Only appear on the pkgdown website - Not accessible via vignette() in R - Not displayed
on CRAN - Use for supplementary content, blog posts, extended tutorials, or frequently
updated material - Created with usethis::use_article("name") - Automatically added
to .Rbuildignore

When to use each: - Vignette: Essential tutorials users need offline, core package
workflows - Article: Supplementary material, case studies, advanced topics, blog-style
content

5.1.3.2 Public Analyses (vignettes/)

Use vignettes/ for analysis workbooks that:

10

5 Code repositories

• Use publicly available data
• Should be accessible to all package users
• Are core to understanding the package

Use vignettes/articles/ for:

• Extended case studies
• Blog-style posts
• Supplementary analyses
• Material that updates frequently

All vignettes and articles will be rendered by pkgdown::build_site() on your package
website.

5.1.3.3 Analyses with Restricted Data (inst/analyses/)

For analyses that rely on private, sensitive, or restricted data, place .qmd or .qmd files
in inst/analyses/:

myproject/
��� inst/
� ��� analyses/
� � ��� 01-confidential-data-analysis.qmd
� � ��� 02-unpublished-results.qmd
� � ��� README.md # Document data access requirements
� ��� extdata/
��� vignettes/

��� 01-public-analysis.qmd
��� 02-demo-with-simulated-data.qmd

Benefits of this approach:

• Analyses with restricted data are included in version control alongside your code
• They’re clearly separated from public documentation
• inst/analyses/ is excluded from pkgdown builds and package documentation
• Collaborators with data access can still run these analyses
• You maintain a complete record of all project work

Note on privacy: Files in inst/analyses/ are not inherently private—they will be visible
if your repository is public. Use this folder for analyses that rely on restricted data that is
stored separately, not for storing the restricted data itself. If you need to keep the analysis
code private, use a private repository.

Best practices for analyses with restricted data:

1. Document data requirements: Include a README.md in inst/analyses/ ex-
plaining:

• What data is required
• Where to obtain it (if permissible)
• Data access restrictions
• How to set up data paths

11

5 Code repositories

2. Use relative paths carefully: Structure your code so data paths can be configured:

In inst/analyses/01-analysis.qmd
Users should set this based on their local setup
data_dir <- Sys.getenv("MYPROJECT_DATA",

default = "~/restricted_data/myproject")
raw_data <- readr::read_csv(file.path(data_dir, "sensitive.csv"))

3. Create public alternatives: When possible, create companion vignettes in
vignettes/ using:

• Simulated data that mimics the structure
• Publicly available datasets
• Aggregated/de-identified summaries

4. Add to .Rbuildignore: Ensure inst/analyses/ doesn’t cause package checks to
fail:

Use usethis to add to .Rbuildignore
usethis::use_build_ignore("inst/analyses")

5.1.4 Keep Analysis Workbooks Tidy

Decompose reusable functions from your analysis notebooks into the R/ directory. Your
vignettes should:

• Be clean, readable narratives of your analysis
• Call well-documented functions from your package
• Focus on the “what” and “why” rather than implementation details
• Be reproducible by others with a single click (or with documented data access for

private analyses)

Example of what NOT to do (all code in vignette):

Bad: 100 lines of data manipulation in vignette
raw_data <- read_csv("data.csv")
... 100 lines of cleaning, transforming, reshaping ...
cleaned_data <- final_result

Example of what TO do (functions in R/, simple calls in vignette):

Good: Clean vignette calling documented functions
raw_data <- read_csv("data.csv")
cleaned_data <- prep_study_data(raw_data) # Function in R/data_prep.R

12

5 Code repositories

5.1.5 Shell Scripts and Automation

Shell scripts are useful for automating workflows and ensuring reproducibility. Place shell
scripts in data-raw/ alongside the R scripts they coordinate:

data-raw/
��� 0-prep-data.sh # Shell script to run all data prep
��� 01-load-survey.R
��� 02-clean-survey.R
��� 03-merge-datasets.R
��� 04-create-analysis-data.R

Using shell scripts:

data-raw/0-prep-data.sh
#!/bin/bash
Rscript data-raw/01-load-survey.R
Rscript data-raw/02-clean-survey.R
Rscript data-raw/03-merge-datasets.R
Rscript data-raw/04-create-analysis-data.R

This is especially useful when data upstream changes — you can simply run the shell script
to reproduce everything. After running shell scripts, .Rout log files will be generated for
each script. It is important to check these files to ensure everything has run correctly.

5.1.6 Storing Analysis Outputs

Results files (.RDS): Save analysis results in inst/extdata/:

Save results
readr::write_rds(analysis_results, here("inst", "extdata", "analysis_results.rds"))

Load results later
results <- readr::read_rds(here("inst", "extdata", "analysis_results.rds"))

Figures and tables: Save publication outputs in inst/output/:

Save figure
ggsave(here("inst", "output", "figures", "fig1_incidence_trends.pdf"),

width = 8, height = 6)

Save table
readr::write_csv(summary_table,

here("inst", "output", "tables", "table1_demographics.csv"))

Organization:

13

5 Code repositories

inst/
��� extdata/
� ��� analysis_results.rds
� ��� model_fits.rds
� ��� processed_data.rds
��� output/

��� figures/
� ��� fig1_incidence_trends.pdf
� ��� fig2_risk_factors.png
� ��� figS1_sensitivity.pdf
��� tables/

��� table1_demographics.csv
��� table2_main_results.xlsx
��� tableS1_detailed_results.csv

5.2 .Rproj files

An “R Project” can be created within RStudio by going to File >> New Project. De-
pending on where you are with your research, choose the most appropriate option. This will
save preferences, working directories, and even the results of running code/data (though
I’d recommend starting from scratch each time you open your project, in general). Then,
ensure that whenever you are working on that specific research project, you open your
created project to enable the full utility of .Rproj files. This also automatically sets the
directory to the top level of the project.

5.3 Organizing the data-raw folder

The data-raw folder serves as a catch-all for scripts that do not (yet) fit into the package
structure described above. The data-raw folder should still be organized. We recommend
the following subdirectory structure for data-raw:

0-run-project.sh
0-config.R
1 - Data-Management/

0-prep-data.sh
1-prep-cdph-fluseas.R
2a-prep-absentee.R
2b-prep-absentee-weighted.R
3a-prep-absentee-adj.R
3b-prep-absentee-adj-weighted.R

2 - Analysis/
0-run-analysis.sh
1 - Absentee-Mean/

1-absentee-mean-primary.R
2-absentee-mean-negative-control.R
3-absentee-mean-CDC.R
4-absentee-mean-peakwk.R
5-absentee-mean-cdph2.R

14

5 Code repositories

6-absentee-mean-cdph3.R
2 - Absentee-Positivity-Check/
3 - Absentee-P1/
4 - Absentee-P2/

3 - Figures/
0-run-figures.sh
...

4 - Tables/
0-run-tables.sh
...

5 - Results/
1 - Absentee-Mean/

1-absentee-mean-primary.RDS
2-absentee-mean-negative-control.RDS
3-absentee-mean-CDC.RDS
4-absentee-mean-peakwk.RDS
5-absentee-mean-cdph2.RDS
6-absentee-mean-cdph3.RDS

...
.gitignore

For brevity, not every directory is “expanded”, but we can glean some important takeaways
from what we do see.

5.3.1 Configuration (‘config’) File

This is the single most important file for your project. It will be responsible for a variety of
common tasks, declare global variables, load functions, declare paths, and more. Every other
file in the project will begin with source("0-config"), and its role is to reduce redundancy
and create an abstraction layer that allows you to make changes in one place (0-config.R)
rather than 5 different files. To this end, paths which will be reference in multiple scripts
(i.e. a merged_data_path) can be declared in 0-config.R and simply referred to by its
variable name in scripts. If you ever want to change things, rename them, or even switch
from a downsample to the full data, all you would then to need to do is modify the path
in one place and the change will automatically update throughout your project. See the
example config file for more details. The paths defined in the 0-config.R file assume that
users have opened the .Rproj file, which sets the directory to the top level of the project.

5.3.2 Order Files and Directories

This makes the jumble of alphabetized filenames much more coherent and places similar
code and files next to one another. This also helps us understand how data flows from
start to finish and allows us to easily map a script to its output (i.e. 2 - Analysis/1 -
Absentee-Mean/1-absentee-mean-primary.R => 5 - Results/1 - Absentee-Mean/1-
absentee-mean-primary.RDS). If you take nothing else away from this guide, this is the
single most helpful suggestion to make your workflow more coherent. Often the particular
order of files will be in flux until an analysis is close to completion. At that time it is
important to review file order and naming and reproduce everything prior to drafting a
manuscript.

15

5 Code repositories

5.3.3 Using Bash scripts to ensure reproducibility

Bash scripts are useful components of a reproducible workflow. At many of the directory
levels (i.e. in 3 - Analysis), there is a bash script that runs each of the analysis scripts.
This is exceptionally useful when data “upstream” changes – you simply run the bash script.
See Chapter 13 for further details.

After running bash scripts, .Rout log files will be generated for each script that has been
executed. It is important to check these files. Scripts may appear to have run correctly in
the terminal, but checking the log files is the only way to ensure that everything has run
completely.

16

6 R Coding Practices

Adapted by UCD-SeRG team from original by Kunal Mishra, Jade Benjamin-Chung,
Stephanie Djajadi, and Iris Tong1

6.1 Lab Protocols for Code and Data

Just as wet labs have strict safety protocols to ensure reproducible results and prevent
contamination, our computational lab has protocols for coding and data management.
These protocols are not suggestions—they are essential practices that:

• Ensure reproducibility: Others (including your future self) can recreate your
analysis

• Prevent errors: Systematic approaches reduce the risk of mistakes
• Enable collaboration: Consistent practices allow team members to work together

efficiently
• Maintain data integrity: Proper handling prevents data corruption and loss
• Support publication: Well-documented, reproducible code is increasingly required

for publication

Violating these protocols can have serious consequences, including invalid results,
wasted time, inability to publish, and damage to scientific credibility. Treat coding and
data management protocols with the same seriousness as you would safety protocols in a
wet lab.

6.2 Essential R Package Development Tools

The following tools are essential for R package development in our lab:

6.2.1 usethis: Package Setup and Management

usethis automates common package development tasks:

Install usethis
install.packages("usethis")

Create a new package
usethis::create_package("~/myproject")

Add common components
usethis::use_mit_license() # Add a license

1https://jadebc.github.io/lab-manual/coding-practices.html

17

https://jadebc.github.io/lab-manual/coding-practices.html

6 R Coding Practices

usethis::use_git() # Initialize git
usethis::use_github() # Connect to GitHub
usethis::use_testthat() # Set up testing infrastructure
usethis::use_vignette("intro") # Create a vignette (shipped with package)
usethis::use_article("case-study") # Create an article (website-only)
usethis::use_data_raw("dataset") # Create data processing script
usethis::use_package("dplyr") # Add a dependency
usethis::use_pipe() # Import magrittr pipe operator (no longer recommended)

Increment version
usethis::use_version() # Increment package version

6.2.2 devtools: Development Workflow

devtools provides the core development workflow:

Install devtools
install.packages("devtools")

Load your package for interactive development
devtools::load_all() # Like library(), but for development

Documentation
devtools::document() # Generate documentation from roxygen2

Testing
devtools::test() # Run all tests
devtools::test_active_file() # Run tests in current file

Checking
devtools::check() # R CMD check (comprehensive validation)
devtools::check_man() # Check documentation only

Dependencies
devtools::install_dev_deps() # Install all development dependencies

Building
devtools::build() # Build package bundle
devtools::install() # Install package locally

6.2.3 pkgdown: Package Websites

pkgdown builds beautiful documentation websites from your package:

Install pkgdown
install.packages("pkgdown")

Set up pkgdown

18

6 R Coding Practices

usethis::use_pkgdown()

Build website locally
pkgdown::build_site()

Preview in browser
pkgdown::build_site(preview = TRUE)

Build components separately
pkgdown::build_reference() # Function reference
pkgdown::build_articles() # Vignettes
pkgdown::build_home() # Home page from README

Configure your pkgdown site with _pkgdown.yml:

url: https://ucd-serg.github.io/YOURPROJECT

template:
bootstrap: 5

reference:
- title: "Data Preparation"

desc: "Functions for preparing and cleaning data"
contents:
- prep_study_data
- validate_data

- title: "Analysis"
desc: "Core analysis functions"
contents:
- run_primary_analysis
- sensitivity_analysis

articles:
- title: "Analysis Workflow"

navbar: Analysis
contents:
- 01-data-preparation
- 02-primary-analysis
- 03-sensitivity-analysis

6.2.4 Alternatives to pkgdown

While {pkgdown}2 is the standard tool for creating package documentation websites, several
alternatives exist that may better suit specific needs, particularly for generating multiple
output formats beyond HTML.

2https://pkgdown.r-lib.org/

19

https://pkgdown.r-lib.org/

6 R Coding Practices

6.2.4.1 altdoc

{altdoc}3 is a flexible alternative that supports multiple documentation frameworks,
including Quarto, Docsify, MkDocs, and Docute. It is especially useful when you need to
generate documentation in multiple formats.

Key features:

• Supports multiple documentation frameworks (Quarto, Docsify, MkDocs, Docute)
• Renders Quarto and R Markdown vignettes to HTML websites
• When using Quarto as the framework, vignettes can be authored to support multiple

output formats (HTML, PDF, DOCX, reveal.js presentations), and Quarto can include
download links for alternative formats on the HTML site (see Quarto documentation
on multiple formats4)

• Handles function reference pages, README, NEWS, and other standard documenta-
tion

• Easy preview and deployment workflow

Basic usage:

Install altdoc
install.packages("altdoc")

Set up documentation with Quarto
altdoc::setup_docs(tool = "quarto_website")

Or use other frameworks
altdoc::setup_docs(tool = "docsify")
altdoc::setup_docs(tool = "mkdocs")
altdoc::setup_docs(tool = "docute")

Render documentation
altdoc::render_docs()

Preview in browser
altdoc::preview_docs()

When to choose altdoc:

• You want to use Quarto’s modern publishing system for your documentation website
• You need vignettes that can be downloaded in multiple formats (when authored with

Quarto’s multi-format support)
• You prefer a different documentation framework than pkgdown’s Bootstrap-based

approach (Docsify, MkDocs, or Docute)
• You need more flexibility in site design and structure

3https://altdoc.etiennebacher.com/
4https://quarto.org/docs/output-formats/html-multi-format.html

20

https://altdoc.etiennebacher.com/
https://quarto.org/docs/output-formats/html-multi-format.html

6 R Coding Practices

6.2.4.2 pkgsite

{pkgsite}5 provides a minimal, lightweight alternative to pkgdown, focusing on simplicity
and ease of customization.

Key features:

• Minimal CSS framework (no Bootstrap)
• Simple, clean design that is easy to customize
• Similar build_site() function to pkgdown
• Lightweight and fast
• Can be published via GitHub Pages or other static site hosts

Basic usage:

Install pkgsite (not on CRAN as of early 2026)
pak::pkg_install("pachadotdev/pkgsite")

Build and preview site
pkgsite::build_site(preview = TRUE)

Build with custom URL and lazy rebuilding
pkgsite::build_site(
url = "https://yourdomain.com",
lazy = TRUE,
preview = TRUE

)

When to choose pkgsite:

• You want a minimal, lightweight documentation site
• You prefer to customize CSS styling from scratch
• You don’t need the extensive features of pkgdown
• You want faster build times for simple packages

6.2.4.3 Quarto for Package Documentation

While not a dedicated package documentation tool, Quarto can be used to create sophisti-
cated documentation websites for R packages, particularly when combined with custom
scripts or tools like {ecodown}6 (experimental and intended for internal use).

Discussion and resources:

• Quarto discussion on pkgdown alternative7

• pkgdown itself now supports Quarto vignettes (as of version 2.1.0)

When to consider Quarto:

• You want complete control over site structure and design

5https://github.com/pachadotdev/pkgsite
6https://github.com/edgararuiz/ecodown
7https://github.com/orgs/quarto-dev/discussions/1591

21

https://github.com/pachadotdev/pkgsite
https://github.com/edgararuiz/ecodown
https://github.com/orgs/quarto-dev/discussions/1591

6 R Coding Practices

• You’re already using Quarto for other documentation
• You need advanced publishing features beyond what pkgdown offers
• You’re comfortable writing custom scripts for function reference extraction

6.2.4.4 Comparison Summary

Tool
Complex-
ity

Website
Output

Multi-format
Support

Customiza-
tion Best For

pkgdown Standard HTML Limited (via Quarto
vignettes)

Template-
based

Most R
packages,
standard
documen-
tation
needs

altdoc Moderate HTML Yes (via
Quarto-authored
vignettes with
download links)

Framework-
dependent

Quarto-
based
work-
flows,
flexible
frame-
works

pkgsite Minimal HTML No High (simple
CSS)

Lightweight
sites,
custom
styling

Quarto Advanced HTML (for
websites)

Yes (native - can
output to PDF,
DOCX, reveal.js,
EPUB)

Complete Full
control,
advanced
features

Recommendation: Use pkgdown for most standard R package documentation needs.
Consider altdoc when you prefer Quarto’s publishing system or want flexibility to choose
between documentation frameworks (Quarto, Docsify, MkDocs, Docute). If you choose
altdoc with Quarto, you can author vignettes to provide downloadable PDF and DOCX
versions alongside the HTML website. Choose pkgsite for minimalist websites with easy CSS
customization. Use Quarto directly only if you need complete control and are comfortable
with more complex setup.

6.3 Complete Package Development Workflow

Here’s the typical workflow for developing an R package in our lab:

6.3.1 1. Initial Setup

Starting from a template (recommended):

Using our R package template is the fastest way to get started with a new R package, as it
provides pre-configured settings, GitHub Actions workflows, and development tools:

22

6 R Coding Practices

• UCD-SeRG R Package Template - Our recommended template with
pre-configured development tools and CI workflows:

– Repository: https://github.com/UCD-SERG/rpt
– Click “Use this template” → “Create a new repository” on GitHub
– Clone your new repository and start developing

The template includes pre-configured:

• GitHub Actions workflows for R CMD check, test coverage, and pkgdown deployment
• Development tools setup ({usethis}8, {devtools}9, {roxygen2}10)
• Testing infrastructure ({testthat}11)
• Code styling and linting configurations
• Package documentation structure

While the template jumpstarts your project with up-to-date configuration and workflow
files, you should still come up to speed on what all the config files do so you can modify
and debug them as needed. The template serves as a central location for the most current
versions of these files and best practices.

Starting from scratch:

If you prefer to start from scratch or need to understand each setup step, you can create a
new package manually:

Create package structure
usethis::create_package("~/myproject")

Set up infrastructure
usethis::use_git()
usethis::use_github()
usethis::use_testthat()
usethis::use_pkgdown()
usethis::use_mit_license()
usethis::use_readme_rmd()

6.3.2 2. Add Dependencies

Add packages your project depends on
usethis::use_package("dplyr")
usethis::use_package("ggplot2")
usethis::use_package("readr")

Add packages only needed for development/testing
usethis::use_package("testthat", type = "Suggests")

8https://usethis.r-lib.org/
9https://devtools.r-lib.org/

10https://roxygen2.r-lib.org/
11https://testthat.r-lib.org/

23

https://github.com/UCD-SERG/rpt
https://usethis.r-lib.org/
https://devtools.r-lib.org/
https://roxygen2.r-lib.org/
https://testthat.r-lib.org/

6 R Coding Practices

6.3.3 3. Write Functions

Create functions in R/ directory with roxygen2 documentation:

#' Prepare Study Data
#'
#' Clean and prepare raw study data for analysis.
#'
#' @param raw_data A data frame containing raw study data
#' @param validate Logical; whether to run validation checks
#'
#' @returns A cleaned data frame ready for analysis
#'
#' @examples
#' raw_data <- read_csv("data.csv")
#' clean_data <- prep_study_data(raw_data)
#'
#' @export
prep_study_data <- function(raw_data, validate = TRUE) {
Function implementation

}

6.3.4 4. Document

Generate documentation from roxygen2 comments
devtools::document()

6.3.5 5. Test

Create tests in tests/testthat/:

tests/testthat/test-data_prep.R
test_that("prep_study_data handles missing values", {
raw_data <- data.frame(x = c(1, NA, 3))
result <- prep_study_data(raw_data)
expect_false(anyNA(result$x))

})

Run tests:

devtools::test()

6.3.6 6. Check

Comprehensive package check
devtools::check()

Fix any warnings or errors before proceeding.

24

6 R Coding Practices

6.3.7 7. Build Documentation Site

pkgdown::build_site()

6.3.8 8. Share and Publish

Push to GitHub
The pkgdown site can be automatically deployed to GitHub Pages
using GitHub Actions

6.4 Organizing scripts

Just as your data “flows” through your project, data should flow naturally through a script.
Very generally, you want to:

1. describe the work completed in the script in a comment header
2. source your configuration file (0-config.R)
3. load all your data
4. do all your analysis/computation
5. save your data.

Each of these sections should be “chunked together” using comments. See this file12 for
a good example of how to cleanly organize a file in a way that follows this “flow” and
functionally separate pieces of code that are doing different things.

6.5 Testing Requirements

ALWAYS establish tests BEFORE modifying functions. This ensures changes
preserve existing behavior and new behavior is correctly validated.

6.5.1 When to Use Snapshot Tests

Use snapshot tests (expect_snapshot(), expect_snapshot_value()) when:

• Testing complex data structures (data frames, lists, model outputs)
• Validating statistical results where exact values may vary slightly
• Output format stability is important

test_that("prep_study_data produces expected structure", {
result <- prep_study_data(raw_data)
expect_snapshot_value(result, style = "serialize")

})

12https://github.com/kmishra9/Flu-Absenteeism/blob/master/Master's%20Thesis%20-%20Spatial%
20Epidemiology%20of%20Influenza/2a%20-%20Statistical-Inputs.R

25

https://github.com/kmishra9/Flu-Absenteeism/blob/master/Master's%20Thesis%20-%20Spatial%20Epidemiology%20of%20Influenza/2a%20-%20Statistical-Inputs.R
https://github.com/kmishra9/Flu-Absenteeism/blob/master/Master's%20Thesis%20-%20Spatial%20Epidemiology%20of%20Influenza/2a%20-%20Statistical-Inputs.R

6 R Coding Practices

6.5.2 When to Use Explicit Value Tests

Use explicit tests (expect_equal(), expect_identical()) when:

• Testing simple scalar outputs
• Validating specific numeric thresholds
• Testing Boolean returns or categorical outputs

test_that("calculate_mean returns correct value", {
expect_equal(calculate_mean(c(1, 2, 3)), 2)
expect_equal(calculate_ratio(3, 7), 0.4285714, tolerance = 1e-6)

})

6.5.3 Testing Best Practices

• Seed randomness: Use withr::local_seed() for reproducible tests
• Use small test cases: Keep tests fast
• Test edge cases: Missing values, empty inputs, boundary conditions
• Test errors: Verify functions fail appropriately with invalid input

test_that("prep_study_data handles edge cases", {
Empty input
expect_error(prep_study_data(data.frame()))

Missing required columns
expect_error(prep_study_data(data.frame(x = 1)))

Valid input with missing values
result <- prep_study_data(data.frame(id = 1:3, value = c(1, NA, 3)))
expect_true(all(!is.na(result$value)))

})

6.6 Benchmarking

INFO Note

This section draws from the Measuring Performancea and Improving Performanceb

chapters in Advanced R by Hadley Wickham, along with documentation for {bench}c

and {profvis}d.
ahttps://adv-r.hadley.nz/perf-measure.html
bhttps://adv-r.hadley.nz/perf-improve.html
chttps://bench.r-lib.org/
dhttps://profvis.r-lib.org/

Performance optimization starts with measurement. Benchmarking helps identify bot-
tlenecks, compare alternative implementations, and ensure your code meets performance
requirements. This section covers when and how to benchmark R code, with a focus on
integration with package development workflows.

26

https://adv-r.hadley.nz/perf-measure.html
https://adv-r.hadley.nz/perf-improve.html
https://bench.r-lib.org/
https://profvis.r-lib.org/

6 R Coding Practices

6.6.1 When to Benchmark

Benchmark when:

• Choosing between implementations: Compare different approaches to the same
problem

• Optimizing critical paths: Identify and improve performance bottlenecks
• Preventing regressions: Ensure new code doesn’t slow down existing functionality
• Processing large datasets: Verify scalability for biostatistics/epidemiology work-

flows
• Implementing computational methods: Test algorithms involving bootstrapping,

simulation, or resampling

Don’t benchmark prematurely. Write correct, readable code first, then measure to find
what actually needs optimization.

6.6.2 Setting Up Benchmarking Infrastructure

Organize benchmarking code separately from unit tests:

mypackage/
tests/

testthat/ # Unit tests (run by R CMD check)
benchmarks/ # Benchmarking scripts (run manually or in CI)

01-data-prep.R
02-analysis.R

Add benchmarking dependencies to DESCRIPTION:

Add bench and profvis as development dependencies
usethis::use_package("bench", type = "Suggests")
usethis::use_package("profvis", type = "Suggests")

Add any packages used in benchmarks
For example, if comparing with data.table or gbm:
usethis::use_package("data.table", type = "Suggests")
usethis::use_package("gbm", type = "Suggests")

Create a benchmark template:

tests/benchmarks/01-data-prep.R
library(bench)
library(mypackage)

Generate test data
n <- 10000
test_data <- data.frame(
id = 1:n,
exposure = rnorm(n),

27

6 R Coding Practices

outcome = rbinom(n, 1, 0.3)
)

Compare implementations
results <- bench::mark(
original = prep_data_v1(test_data),
optimized = prep_data_v2(test_data),
check = FALSE, # Set TRUE to verify outputs are identical
iterations = 100,
time_unit = "ms"

)

print(results)

6.6.3 Using bench for Performance Comparisons

{bench}13 provides accurate performance measurements and makes it easy to compare
multiple implementations.

Basic usage:

library(bench)

Compare different approaches
results <- bench::mark(
base_subset = data[data$group == "treatment",],
dplyr_filter = dplyr::filter(data, group == "treatment"),
data.table = dt[group == "treatment"],
iterations = 100

)

View results
print(results)
#> # A tibble: 3 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 base_subset 1.2ms 1.4ms 714. 1.5MB 2.14
#> 2 dplyr_filter 2.1ms 2.3ms 435. 2.1MB 4.35
#> 3 data.table 850.0µs 950.0µs 1053. 800.0KB 0.00

Plot results
plot(results)

Key features:

• Accurate timing: Accounts for overhead and runs multiple iterations
• Memory tracking: Shows memory allocation for each approach
• Garbage collection: Reports GC frequency

13https://bench.r-lib.org/

28

https://bench.r-lib.org/

6 R Coding Practices

• Output verification: Optional checking that all implementations produce identical
results

Example for biostatistics workflow:

Compare propensity score estimation methods
library(bench)

Simulate cohort data
n <- 5000
cohort <- data.frame(
age = rnorm(n, 50, 15),
bmi = rnorm(n, 27, 5),
treatment = rbinom(n, 1, 0.5),
outcome = rbinom(n, 1, 0.3)

)

Note: Install gbm first if not already installed
usethis::use_package("gbm", type = "Suggests")

Compare GLM vs GBM for propensity scores
ps_benchmark <- bench::mark(
glm_method = {

model <- glm(treatment ~ age + bmi,
data = cohort,
family = binomial())

predict(model, type = "response")
},
gbm_method = {

model <- gbm::gbm(treatment ~ age + bmi,
data = cohort,
distribution = "bernoulli",
n.trees = 100,
verbose = FALSE)

predict(model, n.trees = 100, type = "response")
},
check = FALSE,
iterations = 50

)

print(ps_benchmark)

6.6.4 Using profvis for Memory and CPU Profiling

{profvis}14 identifies where your code spends time and allocates memory. Use it to find
bottlenecks in existing functions.

Basic usage:

14https://profvis.r-lib.org/

29

https://profvis.r-lib.org/

6 R Coding Practices

library(profvis)

Profile a function
profvis({
data <- prep_study_data(raw_data)
results <- run_primary_analysis(data)

})

The profvis output shows:

• Flame graph: Visual representation of time spent in each function
• Data view: Line-by-line time and memory usage
• Memory profile: Allocation patterns over time

Example for data preparation:

library(profvis)

profvis({
Profile data cleaning pipeline
cleaned <- raw_data |>

dplyr::filter(!is.na(id)) |>
dplyr::mutate(

age_group = cut(age, breaks = c(0, 18, 65, Inf)),
bmi_category = cut(bmi, breaks = c(0, 18.5, 25, 30, Inf))

) |>
dplyr::left_join(exposure_data, by = "id") |>
dplyr::group_by(age_group) |>
dplyr::summarize(

n = n(),
mean_bmi = mean(bmi, na.rm = TRUE)

)
})

Interpreting profvis output:

• Wide bars: Functions taking substantial time
• Tall stacks: Deep call chains (potential for simplification)
• Memory spikes: Large allocations (consider chunking or data.table)

Common bottlenecks in epidemiology code:

• Repeated subsetting operations → Use data.table or pre-filter
• Growing objects in loops → Pre-allocate vectors
• Complex joins on large datasets → Index properly or use data.table
• Unnecessary copies → Use reference semantics where appropriate

30

6 R Coding Practices

6.6.5 Integration with Package Development Workflow

Integrate benchmarking into your development cycle:

1. Benchmark before optimization:

tests/benchmarks/baseline.R
Run this before making changes to establish baseline

library(bench)
library(mypackage)

baseline <- bench::mark(
current_implementation = analyze_cohort(test_data),
iterations = 100

)

saveRDS(baseline, "tests/benchmarks/baseline.rds")

2. Profile to identify bottlenecks:

library(profvis)

profvis({
analyze_cohort(test_data)

})
Identify which functions are slow

3. Optimize and re-benchmark:

After optimization
library(bench)

baseline <- readRDS("tests/benchmarks/baseline.rds")

comparison <- bench::mark(
baseline = analyze_cohort_v1(test_data),
optimized = analyze_cohort_v2(test_data),
check = FALSE,
iterations = 100

)

print(comparison)

4. Document performance characteristics:

#' Analyze cohort data
#'
#' @param data A data frame with cohort information
#' @return Analysis results

31

6 R Coding Practices

#'
#' @details
#' Performance characteristics (as of 2025-01):
#' - Typical runtime: ~50ms for 10,000 observations
#' - Memory usage: ~5MB per 10,000 observations
#' - Scales linearly with sample size
#'
#' @examples
#' \dontrun{
#' results <- analyze_cohort(cohort_data)
#' }
#' @export
analyze_cohort <- function(data) {
Implementation

}

6.6.6 CI/CD Integration for Automated Benchmarking

Set up GitHub Actions to track performance over time.

Create .github/workflows/benchmark.yaml:

Key considerations for CI benchmarks:

• Variability: CI runners have variable performance; use thresholds (e.g., >10%
regression)

• Baseline storage: Commit baseline results or use GitHub Actions artifacts
• Selective running: Only benchmark on specific branches or when performance-

critical files change
• Manual triggers: Use workflow_dispatch for on-demand benchmarking
• Security: For production workflows, consider pinning action versions to commit

SHAs instead of tags (see Section 18.5.8)

Alternative: Comment benchmark results on PRs:

Use the {touchstone}15 package for more sophisticated CI benchmarking with automated
PR comments.

6.6.7 Performance Testing with testthat

For critical performance requirements, add performance tests to your test suite.

Example performance test:

tests/testthat/test-performance.R

test_that("data preparation meets performance requirements", {
skip_on_cran() # Skip on CRAN (timing-based tests can be flaky)

Run on CI only if BENCHMARK_ON_CI is set

15https://github.com/lorenzwalthert/touchstone

32

https://github.com/lorenzwalthert/touchstone

6 R Coding Practices

if (identical(Sys.getenv("CI"), "true") &&
!identical(Sys.getenv("BENCHMARK_ON_CI"), "true")) {

skip("Skipping performance test on CI")
}

n <- 10000
test_data <- generate_test_cohort(n)

Measure execution time
timing <- bench::mark(

prep_study_data(test_data),
iterations = 10,
check = FALSE

)

Require median time under threshold
max_time_ms <- 100
median_time_ms <- as.numeric(timing$median) * 1000

expect_true(
median_time_ms < max_time_ms,
info = sprintf(

"prep_study_data took %.1f ms (threshold: %.1f ms)",
median_time_ms,
max_time_ms

)
)

})

test_that("analysis scales linearly with sample size", {
skip_on_cran()

Run on CI only if BENCHMARK_ON_CI is set
if (identical(Sys.getenv("CI"), "true") &&

!identical(Sys.getenv("BENCHMARK_ON_CI"), "true")) {
skip("Skipping performance test on CI")

}

Test at different sample sizes
sizes <- c(1000, 5000, 10000)

timings <- vapply(sizes, function(n) {
data <- generate_test_cohort(n)
result <- bench::mark(

analyze_cohort(data),
iterations = 10

)
as.numeric(result$median)

}, numeric(1))

33

6 R Coding Practices

Check approximate linearity (R² > 0.95)
model <- lm(timings ~ sizes)
r_squared <- summary(model)$r.squared

expect_true(
r_squared > 0.95,
info = sprintf("Scaling R² = %.3f (expected > 0.95)", r_squared)

)
})

When to use performance tests:

• Functions with documented performance requirements
• Critical paths that must stay fast
• Code that processes large datasets

When not to use performance tests:

• Functions without specific performance needs
• Tests that would be flaky due to system variability
• Development environments with limited resources

See Section 6.5 for more on testing with {testthat}16.

6.6.8 Best Practices

Focus benchmarks on realistic scenarios:

Good: Realistic data size
n <- 50000 # Typical cohort size in our studies
test_data <- generate_realistic_cohort(n)

Avoid: Unrealistically small data
n <- 10

Establish baselines:

Before optimizing, measure current performance to understand the improvement.

Document baseline
baseline <- bench::mark(current_implementation(data), iterations = 100)
saveRDS(baseline, "benchmarks/baseline-2025-01.rds")

Compare on equal footing:

16https://testthat.r-lib.org/

34

https://testthat.r-lib.org/

6 R Coding Practices

Good: Same random seed, same data
set.seed(123)
data <- generate_test_data(10000)

bench::mark(
method_a = analyze_a(data),
method_b = analyze_b(data),
check = FALSE

)

Avoid: Different random data
bench::mark(
method_a = analyze_a(generate_test_data(10000)),
method_b = analyze_b(generate_test_data(10000))

)

Benchmark critical paths only:

Don’t optimize everything—focus on code that:

• Runs frequently
• Processes large datasets
• Is called in loops or simulations
• Has noticeable user-facing delays

Use appropriate sample sizes:

For data prep: use typical dataset size
cohort_data <- generate_cohort(n = 50000)

For simulation: use realistic iteration counts
n_iterations <- 1000

Document optimization decisions:

In package documentation or vignette

We use data.table for joins because:
- Benchmarks show 5x speedup over dplyr for n > 100,000
- Typical cohort sizes: 50,000 - 500,000 observations
- See tests/benchmarks/join-comparison.R for details

6.6.9 Additional Resources

• {bench}17 - Accurate benchmarking
• {profvis}18 - Interactive profiling
• Measuring Performance19 chapter in Advanced R
• Improving Performance20 chapter in Advanced R

17https://bench.r-lib.org/
18https://profvis.r-lib.org/
19https://adv-r.hadley.nz/perf-measure.html
20https://adv-r.hadley.nz/perf-improve.html

35

https://bench.r-lib.org/
https://profvis.r-lib.org/
https://adv-r.hadley.nz/perf-measure.html
https://adv-r.hadley.nz/perf-improve.html

6 R Coding Practices

• {touchstone}21 - CI benchmarking with PR comments

6.7 Iterative Operations

When applying analyses with different variations (outcomes, exposures, subgroups), use
functional programming approaches:

6.7.1 lapply() and sapply()

Apply function to each element
results <- lapply(outcomes, function(y) {
run_analysis(data, outcome = y)

})

Simplify to vector if possible
summary_stats <- sapply(data_list, mean)

6.7.2 purrr::map() Family

The purrr package provides type-stable alternatives:

library(purrr)

Always returns a list
results <- map(outcomes, ~ run_analysis(data, outcome = .x))

Type-specific variants
means <- map_dbl(data_list, mean) # Returns numeric vector
models <- map(splits, ~ lm(y ~ x, data = .x)) # Returns list of models

6.7.3 purrr::pmap() for Multiple Arguments

When iterating over multiple parameter lists:

params <- tibble(
outcome = c("outcome1", "outcome2", "outcome3"),
exposure = c("exp1", "exp2", "exp3"),
covariate_set = list(c("age", "sex"), c("age"), c("age", "sex", "bmi"))

)

results <- pmap(params, function(outcome, exposure, covariate_set) {
run_analysis(

data = study_data,
outcome = outcome,

21https://github.com/lorenzwalthert/touchstone

36

https://github.com/lorenzwalthert/touchstone

6 R Coding Practices

exposure = exposure,
covariates = covariate_set

)
})

6.7.4 Parallel Processing

For computationally intensive work, use future and furrr:

library(future)
library(furrr)

Set up parallel processing
plan(multisession, workers = availableCores() - 1)

Parallel version of map()
results <- future_map(large_list, time_consuming_function, .progress = TRUE)

6.8 Reading and Saving Data

6.8.1 RDS Files (Preferred)

Use RDS format for R objects:

Save single object
readr::write_rds(analysis_results, here("results", "analysis.rds"))

Read back
results <- readr::read_rds(here("results", "analysis.rds"))

Avoid .RData files because: - You can’t control object names when loading - Can’t load
individual objects - Creates confusion in older code

6.8.2 CSV Files

For tabular data that may be shared with non-R users:

Write
readr::write_csv(data, here("data-raw", "clean_data.csv"))

Read
data <- readr::read_csv(here("data-raw", "clean_data.csv"))

For very large files, use data.table
data.table::fwrite(large_data, "big_file.csv")
data <- data.table::fread("big_file.csv")

37

6 R Coding Practices

6.9 Version Control and Collaboration

6.9.1 Version Numbers

Follow semantic versioning (MAJOR.MINOR.PATCH):

• Development versions: 0.0.0.9000, 0.0.0.9001, etc.
• First release: 0.1.0
• Bug fixes: increment PATCH (e.g., 0.1.0 → 0.1.1)
• New features: increment MINOR (e.g., 0.1.1 → 0.2.0)
• Breaking changes: increment MAJOR (e.g., 0.2.0 → 1.0.0)

Increment version
usethis::use_version()

6.9.2 NEWS File

Document all user-facing changes in NEWS.md:

myproject 0.2.0

New features

- Added function for data validation
- Improved error messages

Bug fixes

- Fixed issue with missing values
- Corrected calculation error in summary stats

6.10 Quality Assurance Checklist

Before requesting human review on a pull request or finalizing analysis, verify:

� All functions have complete roxygen2 documentation
� All functions have corresponding tests
� devtools::document() has been run
� devtools::test() passes with no failures
� devtools::check() passes with no errors, warnings, or notes
� lintr::lint_package() shows no issues (or only acceptable ones)
� spelling::spell_check_package() passes
� Version number has been incremented
� NEWS.md has been updated with changes
� README.Rmd has been updated (if needed) and README.md regenerated
� pkgdown::build_site() builds successfully
� All changes committed and pushed to GitHub
� Copilot review completed iteratively until no valuable suggestions remain (typically

1-3 iterations, with all comments addressed or dismissed)

38

6 R Coding Practices

6.11 Automated Code Styling

6.11.1 RStudio Built-in Formatting

Use RStudio’s built-in autoformatter (keyboard shortcut: CMD-Shift-A or Ctrl-Shift-A)
to quickly format highlighted code.

6.11.2 styler Package

For automated styling of entire projects:

Install styler
install.packages("styler")

Style all files in R/ directory
styler::style_dir("R/")

Style entire package
styler::style_pkg()

Note: styler modifies files in-place
Always use with version control so you can review changes

6.11.3 lintr Package

For checking code style without modifying files:

Install lintr
install.packages("lintr")

Lint the entire package
lintr::lint_package()

Lint a specific file
lintr::lint("R/my_function.R")

The linter checks for:

• Unused variables
• Improper whitespace
• Line length issues
• Style guide violations

You can customize linting rules by creating a .lintr file in your project root.

See also Section 8.11.

39

6 R Coding Practices

6.12 Documenting your code

6.12.1 Function headers

Every function you write must include documentation to describe its purpose, inputs, and
outputs. For any reproducible workflows, this is essential, because R is dynamically typed.
This means you can pass a string into an argument that is meant to be a data.table, or
a list into an argument meant for a tibble. It is the responsibility of a function’s author
to document what each argument is meant to do and its basic type.

We use {roxygen2}22 (Wickham et al. 2024) for function documentation. Roxygen2
allows you to describe your functions in special comments next to their definitions, and
automatically generates R documentation files (.Rd files) and helps manage your package
NAMESPACE. The roxygen2 format uses #' comments placed immediately before the function
definition.

Here is an example of documenting a function using roxygen2:

#' Calculate flu season means by site
#'
#' Make a dataframe with rows for flu season and site
#' containing the number of patients with an outcome, the total patients,
#' and the percent of patients with the outcome.
#'
#' @param data A data frame with variables flu_season, site, studyID, and yname
#' @param yname A string for the outcome name
#' @param silent A boolean specifying whether to suppress console output
#' (default: TRUE)
#'
#' @returns A dataframe as described above
#'
#' @examples
#' calc_fluseas_mean(my_data, "hospitalized", silent = FALSE)
#'
calc_fluseas_mean <- function(data, yname, silent = TRUE) {

function code here

}

The roxygen2 header tells you what the function does, its various inputs, and how you
might use it. Also notice that all optional arguments (i.e. ones with pre-specified defaults)
follow arguments that require user input.

For more information on roxygen2 syntax and features, see https://roxygen2.r-lib.org/.

6.12.2 Using ... (dots) and @inheritDotParams

The ... argument (pronounced “dots” or “ellipsis”) is a special R construct that allows
functions to accept additional arguments that are passed to other functions. This is
particularly useful when creating wrapper functions that call other functions internally.
22https://roxygen2.r-lib.org/

40

https://roxygen2.r-lib.org/
https://roxygen2.r-lib.org/

6 R Coding Practices

When to use ...:

• You’re creating a wrapper function that calls another function
• You want to allow users to pass additional arguments to an internal function
• You want to provide flexibility without explicitly listing all possible arguments

Basic example with ...:

#' Plot data with custom ggplot2 styling
#'
#' A wrapper function that creates a scatter plot with custom theme settings.
#' Additional arguments are passed to ggplot2::geom_point().
#'
#' @param data A data frame containing the variables to plot
#' @param x A string specifying the x-axis variable name
#' @param y A string specifying the y-axis variable name
#' @param ... Additional arguments passed to ggplot2::geom_point()
#'
#' @returns A ggplot2 object
#'
#' @examples
#' # Pass color and size arguments to geom_point
#' plot_with_style(my_data, "age", "height", color = "blue", size = 3)
#'
plot_with_style <- function(data, x, y, ...) {
ggplot2::ggplot(data, ggplot2::aes(.data[[x]], .data[[y]])) +

ggplot2::geom_point(...) +
ggplot2::theme_minimal() # Apply a minimal theme

}

While the example above documents ... with a simple description, roxygen2 provides
@inheritDotParams to automatically inherit parameter documentation from the function
you’re calling. This is more robust and maintainable because it automatically stays
synchronized with the target function’s documentation.

Using @inheritDotParams:

#' Plot data with custom ggplot2 styling
#'
#' A wrapper function that creates a scatter plot with custom theme settings.
#'
#' @param data A data frame containing the variables to plot
#' @param x A string specifying the x-axis variable name
#' @param y A string specifying the y-axis variable name
#' @inheritDotParams ggplot2::geom_point -mapping -data -stat -position
#'
#' @returns A ggplot2 object
#'
#' @examples
#' # Pass color and size arguments to geom_point
#' plot_with_style(my_data, "age", "height", color = "blue", size = 3)
#'

41

6 R Coding Practices

plot_with_style <- function(data, x, y, ...) {
ggplot2::ggplot(data, ggplot2::aes(.data[[x]], .data[[y]])) +

ggplot2::geom_point(...) +
ggplot2::theme_minimal() # Apply a minimal theme

}

The @inheritDotParams tag:

• Automatically imports parameter documentation from ggplot2::geom_point()
• Uses -mapping -data -stat -position to exclude parameters that don’t make

sense in this context
• Keeps documentation synchronized if the underlying function changes
• Makes it clear which function receives the ... arguments

Best practices for ...:

1. Always document what receives the dots: Use @inheritDotParams when passing
to a specific function, or clearly describe where the arguments go

2. Exclude irrelevant parameters: Use the -param_name syntax to exclude parame-
ters that don’t apply

3. Validate unexpected arguments: Consider using the {ellipsis}23 package to
catch misspelled argument names:
my_function <- function(x, y, ...) {
ellipsis::check_dots_used()
function code

}

4. Consider alternatives: If you’re only passing a few specific arguments, it may be
clearer to list them explicitly rather than using ...

For more details on @inheritDotParams, see the roxygen2 documentation on inheriting
parameters24.

INFO Note

As someone trying to call a function, it is possible to access a function’s documentation
(and internal code) by CMD-Left-Clicking the function’s name in RStudio

INFO Note

Depending on how important your function is, the complexity of your function code,
and the complexity of different types of data in your project, you can also add “type-
checking” to your function with the assertthat::assert_that() function. You can,
for example, assert_that(is.data.frame(statistical_input)), which will ensure
that collaborators or reviewers of your project attempting to use your function are using
it in the way that it is intended by calling it with (at the minimum) the correct type
of arguments. You can extend this to ensure that certain assumptions regarding the
inputs are fulfilled as well (i.e. that time_column, location_column, value_column,

23https://ellipsis.r-lib.org/
24https://roxygen2.r-lib.org/articles/rd.html#inheriting-documentation

42

https://ellipsis.r-lib.org/
https://roxygen2.r-lib.org/articles/rd.html#inheriting-documentation

6 R Coding Practices

and population_column all exist within the statistical_input tibble).

6.12.3 Script headers

Every file in a project that doesn’t have roxygen function documentation should at least
have a header that allows it to be interpreted on its own. It should include the name of the
project and a short description for what this file (among the many in your project) does
specifically. You may optionally wish to include the inputs and outputs of the script as
well, though the next section makes this significantly less necessary.

##
@Organization - Example Organization
@Project - Example Project
@Description - This file is responsible for [...]
##

6.12.4 Sections and subsections

Rstudio (v1.4 or more recent25) supports the use of Sections and Subsections. You can
easily navigate through longer scripts using the navigation pane in RStudio, as shown on
the right below.

Section -------

Subsection -------

Sub-subsection -------

6.12.5 Code folding

Consider using RStudio’s code folding26 feature to collapse and expand different sections
of your code. Any comment line with at least four trailing dashes (-), equal signs (=), or
pound signs (#) automatically creates a code section. For example:

6.12.6 Comments in the body of your code

Commenting your code is an important part of reproducibility and helps document your
code for the future. When things change or break, you’ll be thankful for comments. There’s
no need to comment excessively or unnecessarily, but a comment describing what a large
or complex chunk of code does is always helpful. See this file27 for an example of how to
comment your code and notice that comments are always in the form of:

25https://blog.rstudio.com/2020/12/02/rstudio-v1-4-preview-little-things/
26https://support.rstudio.com/hc/en-us/articles/200484568-Code-Folding-and-Sections
27https://github.com/kmishra9/Flu-Absenteeism/blob/master/Master's%20Thesis%20-%20Spatial%

20Epidemiology%20of%20Influenza/1b%20-%20Map-Management.R

43

https://blog.rstudio.com/2020/12/02/rstudio-v1-4-preview-little-things/
https://support.rstudio.com/hc/en-us/articles/200484568-Code-Folding-and-Sections
https://github.com/kmishra9/Flu-Absenteeism/blob/master/Master's%20Thesis%20-%20Spatial%20Epidemiology%20of%20Influenza/1b%20-%20Map-Management.R
https://github.com/kmishra9/Flu-Absenteeism/blob/master/Master's%20Thesis%20-%20Spatial%20Epidemiology%20of%20Influenza/1b%20-%20Map-Management.R

6 R Coding Practices

This is a comment -- first letter is capitalized and spaced away from the pound sign

See also Section 8.2 for function documentation style guidelines.

6.13 Object naming

Generally we recommend using nouns for objects and verbs for functions. This is because
functions are performing actions, while objects are not.

Try to make your variable names both more expressive and more explicit. Being a bit more
verbose is useful and easy in the age of autocompletion! For example, instead of naming a
variable vaxcov_1718, try naming it vaccination_coverage_2017_18. Similarly, flu_res
could be named absentee_flu_residuals, making your code more readable and explicit.

• For more help, check out Be Expressive: How to Give Your Variables Better Names28

We recommend you use snake_case.

• Base R allows . in variable names and functions (such as read.csv()), but this
goes against best practices for variable naming in many other coding languages.
For consistency’s sake, snake_case has been adopted across languages, and modern
packages and functions typically use it (i.e. readr::read_csv()). As a very general
rule of thumb, if a package you’re using doesn’t use snake_case, there may be an
updated version or more modern package that does, bringing with it the variety
of performance improvements and bug fixes inherent in more mature and modern
software.

INFO Note

You may also see camelCase throughout the R code you come across. This is okay
but not ideal – try to stay consistent across all your code with snake_case.

INFO Note

Again, it’s also worth noting there’s nothing inherently wrong with using . in variable
names, just that it goes against style best practices that are cropping up in data
science, so it’s worth getting rid of these bad habits now.

See also Section 8.10.

6.14 Function calls

In a function call, use “named arguments” and put each argument on a separate line to
make your code more readable.

Here’s an example of what not to do when calling the function a function
calc_fluseas_mean (defined above):

28https://spin.atomicobject.com/2017/11/01/good-variable-names/

44

https://spin.atomicobject.com/2017/11/01/good-variable-names/

6 R Coding Practices

mean_Y = calc_fluseas_mean(flu_data, "maari_yn", FALSE)

And here it is again using the best practices we’ve outlined:

mean_Y <- calc_fluseas_mean(
data = flu_data,
yname = "maari_yn",
silent = FALSE

)

6.15 The here package

The here package is one great R package that helps multiple collaborators deal with the
mess that is working directories within an R project structure. Let’s say we have an
R project at the path /home/oski/Some-R-Project. My collaborator might clone the
repository and work with it at some other path, such as /home/bear/R-Code/Some-R-
Project. Dealing with working directories and paths explicitly can be a very large pain,
and as you might imagine, setting up a Config with paths requires those paths to flexibly
work for all contributors to a project. This is where the here package comes in and this a
great vignette describing it29.

See also Section 8.9 for code style guidelines on using the here package.

6.16 Reading/Saving Data

6.16.1 .RDS vs .RData Files

One of the most common ways to load and save data in Base R is with the load() and
save() functions to serialize multiple objects in a single .RData file. The biggest problems
with this practice include an inability to control the names of things getting loaded in,
the inherent confusion this creates in understanding older code, and the inability to load
individual elements of a saved file. For this, we recommend using the RDS format to save
R objects.

INFO Note

If you have many related R objects you would have otherwise saved all together using
the save function, the functional equivalent with RDS would be to create a (named)
list containing each of these objects, and saving it.

6.16.2 CSVs

Once again, the readr package as part of the Tidvyerse is great, with a much faster
read_csv() than Base R’s read.csv(). For massive CSVs (> 5 GB), you’ll find
data.table::fread() to be the fastest CSV reader in any data science language out there.
For writing CSVs, readr::write_csv() and data.table::fwrite() outclass Base R’s
write.csv() by a significant margin as well.
29https://github.com/jennybc/here_here

45

https://github.com/jennybc/here_here

6 R Coding Practices

6.17 Integrating Box and Dropbox

Box and Dropbox are cloud-based file sharing systems that are useful when dealing with
large files. When our scripts generate large output files, the files can slow down the workflow
if they are pushed to GitHub. This makes collaboration difficult when not everyone has
a copy of the file, unless we decide to duplicate files and share them manually. The files
might also take up a lot of local storage. Box and Dropbox help us avoid these issues by
automatically storing the files, reading data, and writing data back to the cloud.

Box and Dropbox are separate platforms, but we can use either one to store and share
files. To use them, we can install the packages that have been created to integrate Box and
Dropbox into R. The set-up instructions are detailed below.

Make sure to authenticate before reading and writing from either Box or Dropbox. The
authentication commands should go in the configuration file; it only needs to be done once.
This will prompt you to give your login credentials for Box and Dropbox and will allow
your application to access your shared folders.

6.17.1 Box

Follow the instructions in this section to use the boxr package. Note that there are a few
setup steps that need to be done on the box website before you can use the boxr package, ex-
plained here30 in the section “Creating an Interactive App.” This gets the authentication keys
that must be put in box. Once that is done, add the authentication keys to your code in the
configuration file, with box_auth(client_id = "<your_client_id>", client_secret =
"<your_client_secret_id>"). It is also important to set the default working directory
so that the code can reference the correct folder in box: box_setwd(<folder_id>). The
folder ID is the sequence of digits at the end of the URL.

Further details can be found here31.

6.17.2 Dropbox

Follow the instructions at this link32 to use the rdrop2 package. Similar to the boxr
package, you must authenticate before reading and writing from Dropbox, which can be
done by adding drop_auth() to the configuration file.

Saving the authentication token is not required, although it may be useful if you plan on
using Dropbox frequently. To do so, save the token with the following commands. Tokens
are valid until they are manually revoked.

first time only
save the output of drop_auth to an RDS file
token <- drop_auth()
this token only has to be generated once, it is valid until revoked
saveRDS(token, "/path/to/tokenfile.RDS")

all future usages

30https://r-box.github.io/boxr/articles/boxr-app-interactive.html#create
31https://github.com/r-box/boxr
32https://github.com/karthik/rdrop2

46

https://r-box.github.io/boxr/articles/boxr-app-interactive.html#create
https://github.com/r-box/boxr
https://github.com/karthik/rdrop2

6 R Coding Practices

to use a stored token, provide the rdstoken argument
drop_auth(rdstoken = "/path/to/tokenfile.RDS")

6.18 Tidyverse

Throughout this document there have been references to the Tidyverse, but this section is to
explicitly show you how to transform your Base R tendencies to Tidyverse (or Data.Table,
Tidyverse’s performance-optimized competitor). For most of our work that does not utilize
very large datasets, we recommend that you code in Tidyverse rather than Base R. Tidyverse
is quickly becoming the gold standard33 in R data analysis and modern data science packages
and code should use Tidyverse style and packages unless there’s a significant reason not to
(i.e. big data pipelines that would benefit from Data.Table’s performance optimizations).
Note that {dtplyr}34 provides a data.table backend for dplyr, enabling you to use most of
dplyr’s tidy syntax with data.table’s performance optimizations.

The package author has published R for Data Science (Wickham, Çetinkaya-Rundel, and
Grolemund 2023), which leans heavily on many Tidyverse packages and may be worth
checking out.

6.19 Core Tidyverse Packages

The tidyverse35 is a collection of R packages designed for data science that share an
underlying design philosophy, grammar, and data structures. As of tidyverse 1.3.0, the
following nine packages are included in the core tidyverse and are loaded automatically
when you run library(tidyverse):

6.19.1 ggplot236

{ggplot2}37 is a system for declaratively creating graphics, based on The Grammar of
Graphics. You provide the data, tell ggplot2 how to map variables to aesthetics and what
graphical primitives to use, and it takes care of the details.

6.19.2 dplyr38

{dplyr}39 provides a grammar of data manipulation, providing a consistent set of verbs
that solve the most common data manipulation challenges. Key functions include filter(),
select(), mutate(), summarize(), and arrange().

33https://rviews.rstudio.com/2017/06/08/what-is-the-tidyverse/
34https://dtplyr.tidyverse.org/
35https://www.tidyverse.org/
36https://ggplot2.tidyverse.org/
37https://ggplot2.tidyverse.org/
38https://dplyr.tidyverse.org/
39https://dplyr.tidyverse.org/

47

https://rviews.rstudio.com/2017/06/08/what-is-the-tidyverse/
https://dtplyr.tidyverse.org/
https://www.tidyverse.org/
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://dplyr.tidyverse.org/
https://dplyr.tidyverse.org/

6 R Coding Practices

6.19.3 tidyr40

{tidyr}41 provides a set of functions that help you get to tidy data. Tidy data is data with
a consistent form: in brief, every variable goes in a column, and every column is a variable.
Key functions include pivot_longer(), pivot_wider(), separate(), and unite().

6.19.3.1 When to use dplyr vs tidyr

While both {dplyr}42 and {tidyr}43 work with data frames, they serve different purposes:

• Use dplyr for data manipulation within the current structure: filtering rows, selecting
columns, creating new variables, summarizing data, or joining datasets. These
operations work with your data as-is.

• Use tidyr for reshaping your data structure itself: converting between wide and
long formats (pivot_longer(), pivot_wider()), splitting or combining columns
(separate(), unite()), or handling missing values explicitly (complete(), fill()).

These packages work together seamlessly in data analysis workflows. A typical pattern is
to use tidyr to reshape your data into the right structure, then use dplyr to manipulate
and analyze it.

6.19.4 readr44

{readr}45 provides a fast and friendly way to read rectangular data (like csv, tsv, and fwf).
It is designed to flexibly parse many types of data found in the wild, while still cleanly
failing when data unexpectedly changes.

6.19.5 purrr46

{purrr}47 enhances R’s functional programming48 (FP) toolkit by providing a complete
and consistent set of tools for working with functions and vectors. Once you master the
basic concepts, purrr allows you to replace many for loops with code that is easier to write
and more expressive. See Section 6.7 for more details on using purrr.

40https://tidyr.tidyverse.org/
41https://tidyr.tidyverse.org/
42https://dplyr.tidyverse.org/
43https://tidyr.tidyverse.org/
44https://readr.tidyverse.org/
45https://readr.tidyverse.org/
46https://purrr.tidyverse.org/
47https://purrr.tidyverse.org/
48https://en.wikipedia.org/wiki/Functional_programming

48

https://tidyr.tidyverse.org/
https://tidyr.tidyverse.org/
https://dplyr.tidyverse.org/
https://tidyr.tidyverse.org/
https://readr.tidyverse.org/
https://readr.tidyverse.org/
https://purrr.tidyverse.org/
https://purrr.tidyverse.org/
https://en.wikipedia.org/wiki/Functional_programming

6 R Coding Practices

6.19.6 tibble49

{tibble}50 is a modern re-imagining of the data frame, keeping what time has proven to
be effective, and throwing out what it has not. Tibbles are data.frames that are lazy and
surly: they do less and complain more forcing you to confront problems earlier, typically
leading to cleaner, more expressive code.

6.19.7 stringr51

{stringr}52 provides a cohesive set of functions designed to make working with strings as
easy as possible. It is built on top of stringi, which uses the ICU C library to provide fast,
correct implementations of common string manipulations.

6.19.8 forcats53

{forcats}54 provides a suite of useful tools that solve common problems with factors. R
uses factors to handle categorical variables, variables that have a fixed and known set of
possible values.

6.19.9 lubridate55

{lubridate}56 provides a set of functions for working with date-times, extending and
improving on R’s existing support for them. Key functions include ymd(), mdy(), dmy()
for parsing dates, and year(), month(), day() for extracting components.

6.20 Base R to Tidyverse Translation

The following list is not exhaustive, but is a compact overview to begin to translate Base R
into something better:

Base R Better Style, Performance, and Utility

_ _
read.csv() readr::read_csv() or

data.table::fread()
write.csv() readr::write_csv() or

data.table::fwrite()
readRDS readr::read_rds()
saveRDS() readr::write_rds()
_ _
data.frame() tibble::tibble() or tibble::tribble()

49https://tibble.tidyverse.org/
50https://tibble.tidyverse.org/
51https://stringr.tidyverse.org/
52https://stringr.tidyverse.org/
53https://forcats.tidyverse.org/
54https://forcats.tidyverse.org/
55https://lubridate.tidyverse.org/
56https://lubridate.tidyverse.org/

49

https://tibble.tidyverse.org/
https://tibble.tidyverse.org/
https://stringr.tidyverse.org/
https://stringr.tidyverse.org/
https://forcats.tidyverse.org/
https://forcats.tidyverse.org/
https://lubridate.tidyverse.org/
https://lubridate.tidyverse.org/

6 R Coding Practices

Base R Better Style, Performance, and Utility

rbind() dplyr::bind_rows()
cbind() dplyr::bind_cols()
df$some_column df |> dplyr::pull(some_column)
df$some_column = ... df |> dplyr::mutate(some_column =

...)
df[get_rows_condition,] df |>

dplyr::filter(get_rows_condition)
df[,c(col1, col2)] df |> dplyr::select(col1, col2)
merge(df1, df2, by = ..., all.x =
..., all.y = ...)

df1 |> dplyr::left_join(df2, by =
...) or dplyr::full_join or
dplyr::inner_join or
dplyr::right_join

_ _
str() dplyr::glimpse()
grep(pattern, x) stringr::str_which(string, pattern)
gsub(pattern, replacement, x) stringr::str_replace(string,

pattern, replacement)
ifelse(test_expression, yes, no) if_else(condition, true, false)
Nested: ifelse(test_expression1,
yes1, ifelse(test_expression2, yes2,
ifelse(test_expression3, yes3, no)))

case_when(test_expression1 ~ yes1,
test_expression2 ~ yes2,
test_expression3 ~ yes3, TRUE ~ no)

proc.time() tictoc::tic() and tictoc::toc()
stopifnot() assertthat::assert_that() or

assertthat::see_if() or
assertthat::validate_that()

_ _
sessionInfo() sessioninfo::session_info()

For a more extensive set of syntactical translations to Tidyverse, you can check out this
document57.

6.21 Programming with Tidyverse

Working with Tidyverse within functions can be somewhat of a pain due to non-standard
evaluation (NSE) semantics. If you’re an avid function writer, we’d recommend checking
out the following resources:

• Programming with dplyr58 (package vignette)
• Using dplyr in packages59 (package vignette)
• Tidy Eval in 5 Minutes60 (video)
• Tidy Evaluation61 (e-book)

57https://tavareshugo.github.io/data_carpentry_extras/base-r_tidyverse_equivalents/base-r_tidyverse_
equivalents.html

58https://dplyr.tidyverse.org/articles/programming.html
59https://dplyr.tidyverse.org/articles/in-packages.html
60https://www.youtube.com/watch?v=nERXS3ssntw
61https://dplyr.tidyverse.org/articles/programming.html

50

https://tavareshugo.github.io/data_carpentry_extras/base-r_tidyverse_equivalents/base-r_tidyverse_equivalents.html
https://tavareshugo.github.io/data_carpentry_extras/base-r_tidyverse_equivalents/base-r_tidyverse_equivalents.html
https://dplyr.tidyverse.org/articles/programming.html
https://dplyr.tidyverse.org/articles/in-packages.html
https://www.youtube.com/watch?v=nERXS3ssntw
https://dplyr.tidyverse.org/articles/programming.html

6 R Coding Practices

• Evaluation62 (advanced details)
• Data Frame Columns as Arguments to Dplyr Functions63 (blog)
• Standard Evaluation for *_join64 (stackoverflow)

See also Section 8.8

6.22 Coding with R and Python

If you’re using both R and Python, you may wish to check out the Feather package65 for
exchanging data between the two languages extremely quickly66.

6.23 Repeating analyses with different variations

In many cases, we will need to apply our modeling on different combinations of interests
(outcomes, exposures, etc.). We can certainly use a for loop to repeat the execution of a
wrapper function, but generally, for loops request high memory usage and produce the
results in long computation time.

Fortunately, R has some functions which implement looping in a compact form to help
repeating your analyses with different variations (subgroups, outcomes, covariate sets, etc.)
with better performances.

6.23.1 lapply() and sapply()

lapply() is a function in the base R package that applies a function to each element of a
list and returns a list. It’s typically faster than for. Here is a simple generic example:

result <- lapply(X = mylist, FUN = func)

There is another very similar function called sapply(). It also takes a list as its input,
but if the output of the func is of the same length for each element in the input list, then
sapply() will simplify the output to the simplest data structure possible, which will usually
be a vector.

6.23.2 mapply() and pmap()

Sometimes, we’d like to employ a wrapper function that takes arguments from multiple
different lists/vectors. Then, we can consider using mapply() from the base R package or
pmap() from the purrr package.

Please see the simple specific example below where the two input lists are of the same
length and we are doing a pairwise calculation:

62https://adv-r.hadley.nz/evaluation.html
63https://www.brodrigues.co/blog/2016-07-18-data-frame-columns-as-arguments-to-dplyr-functions/
64https://stackoverflow.com/questions/28125816/r-standard-evaluation-for-join-dplyr
65https://www.rdocumentation.org/packages/feather/versions/0.3.3
66https://blog.rstudio.com/2016/03/29/feather/

51

https://adv-r.hadley.nz/evaluation.html
https://www.brodrigues.co/blog/2016-07-18-data-frame-columns-as-arguments-to-dplyr-functions/
https://stackoverflow.com/questions/28125816/r-standard-evaluation-for-join-dplyr
https://www.rdocumentation.org/packages/feather/versions/0.3.3
https://blog.rstudio.com/2016/03/29/feather/

6 R Coding Practices

mylist1 = list(0:3)
mylist2 = list(6:9)
mylists = list(mylist1, mylist2)

square_sum <- function(x, y) {
x^2 + y^2

}

#Use `mapply()`
result1 <- mapply(FUN = square_sum, mylist1, mylist2)

#Use `pmap()`
library(purrr)
result2 <- pmap(.l = mylists, .f = square_sum)

#unlist(as.list(result1)) = result2 = [36 50 68 90]

There are two major differences between mapply() and pmap(). The first difference is
that mapply() takes seperate lists as its input arguments, while pmap() takes a list of list.
Secondly, the output of mapply() will be in the form of a matrix or an array, but pmap()
produces a list directly.

However, when the input lists are of different lengths AND/OR the wrapper
function doesn’t take arguments in pairs, mapply() and pmap() may not give the
preferable results.

Both mapply() and pmap() will recycle shorter input lists to match the length of the longest
input list. Assume that now mylist2 = list(6:12). Then, pmap(mylists, square_sum)
will generate [36 50 68 90 100 122 148] where elements 0, 1, and 2 are recycled to
match 10, 11, and 12. And it will return an error message that “longer object length is not
a multiple of shorter object length.”

Thus, unless the recycling pattern described above is desirable feature for a certain exper-
iment design, when the input lists are of different lengths, the best practice is
probably to use lapply() and then combine the results.

Here is an example where we’d like to find the square_sum for every element combination
of mylist1 and mylist2.

mylist1 <- list(0:3)
mylist2 <- list(6:12)

square_sum <- function(x, y) {
x^2 + y^2

}

results <- list()

for (i in seq_along(mylist1[[1]])) {
result <- lapply(X = mylist2, FUN = function(y) square_sum(mylist1[[1]][i], y))
results[[i]] <- result

}

52

6 R Coding Practices

This example doesn’t work in the way that 0 is paired to 6, 1 is paired to 7, and so on.
Instead, every element in mylist1 will be paired with every element in mylist2. Thus, the
“unlisted” results from the example will have 4 ∗ 7 = 28 elements.

We can use flatten() or unlist() functions to decrease the depths of our results. If the
results are data frames, then we will need to use bind_rows() to combine them.

6.23.3 Parallel processing with parallel and future packages

One big drawback of lapply() is its long computation time, especially when the list length
is long. Fortunately, computers nowadays must have multiple cores which makes parallel
processing possible to help make computation much faster.

Assume you have a list called mylist of length 1000, and lapply(X = mylist, FUN =
func) applies the function to each of the 1000 elements one by one in 𝑇 seconds. If we
could execute the func in 𝑛 processors simultaneously, then ideally, we would shrink the
computation time to 𝑇 /𝑛 seconds.

In practice, using functions under the parallel and the future packages, we can split
mylist into smaller chunks and apply the function to each element of the several chunks in
parallel in different cores to significantly reduce the run time.

6.23.3.1 parLapply()

Below is a generic example of parLapply():

library(parallel)

Set how many processors will be used to process the list and make cluster
n_cores <- 4
cl <- makeCluster(n_cores)

#Use parLapply() to apply func to each element in mylist
result <- parLapply(cl = cl, x = mylist, FUN = func)

#Stop the parallel processing
stopCluster(cl)

Let’s still assume mylist is of length 1000. The parLapply above splits mylist into 4
sub-lists each of length 250 and applies the function to the elements of each sub-list in
parallel. To be more specific, first apply the function to element 1, 251, 501, 751; second
apply to element 2, 252, 502, 752; so on and so forth. As such, the computation time will
be greatly reduced.

You can use parallel::detectCores() to test how many cores your machine has and to
help decide what to put for n_cores. It would be a good idea to leave at least one core
free for the operating system to use.

We will always start parLapply() with makeCluster(). stopCluster() is not fully
necessary but follows the best practices. If not stopped, the processing will continue
in the back end and consuming the computation capacity for other software in your machine.

53

6 R Coding Practices

But keep in mind that stopping the cluster is similar quitting R, meaning that you will need
to re-load the packages needed when you need to do parallel processing use parLapply()
again.

6.23.3.2 future.lapply()

Below is a generic example of future.lapply():

library(future)
library(future.apply)

First, plan how the future_lapply() will be resolved
future::plan(
multisession, workers = future::availableCores() - 1

)

Use future_lapply() to apply func to each element in mylist
future_lapply(x = mylist, FUN = func)

Here, future::availableCores() checks how many cores your machine has. Similar to
parLapply() showed above, future_lapply() parallelizes the computation of lapply()
by executing the function func simultaneously on different sub-lists of mylist.

6.24 Reviewing Code

Before publishing new changes, it is important to ensure that the code has been tested
and well-documented. GitHub makes it possible to document all of these changes in a pull
request. Pull requests can be used to describe changes in a branch that are ready to be
merged with the base branch (more information in the GitHub section).

This section provides guidance on both constructing effective pull requests and reviewing
code submitted by others. Much of the content in this section is adapted from the Tidyverse
code review principles (Tidyverse Team 2023), which provides excellent principles for code
review in R package development.

6.25 Constructing Pull Requests

6.25.1 Write Focused PRs

A focused pull request is one self-contained change that addresses just one thing. Writing
focused PRs has several benefits:

• Faster reviews: It’s easier for a reviewer to find 5-10 minutes to review a single bug
fix than to set aside an hour for one large PR implementing many features.

• More thorough reviews: Large PRs with many changes can overwhelm reviewers,
leading to important points being missed.

• Fewer bugs: Smaller changes make it easier to reason about impacts and identify
potential issues.

54

6 R Coding Practices

• Easier to merge: Large PRs take longer and are more likely to have merge conflicts.
• Less wasted work: If the overall direction is wrong, you’ve wasted less time on a

small PR.

As a guideline, 100 lines is usually a reasonable size for a PR, and 1000 lines is usually
too large. However, the number of files affected also matters—a 200-line change in one file
might be fine, but the same change spread across 50 files is usually too large.

6.25.2 Writing PR Descriptions

When you submit a pull request, include a detailed PR title and description. A comprehen-
sive description helps your reviewer and provides valuable historical context.

PR Title: The title should be a short summary (ideally under 72 characters) of what is
being done. It should be informative enough that future developers can understand what
the PR did without reading the full description.

Poor titles that lack context:

• “Fix bug”
• “Add patch”
• “Moving code from A to B”

Better titles that summarize the actual change:

• “Fix missing value handling in data processing function”
• “Add support for custom date formats in import functions”

PR Description Body: The description should provide context that helps the reviewer
understand your PR. Consider including:

• A brief description of the problem being solved
• Links to related issues (e.g., “Closes #123” or “Related to #456”)
• A before/after example showing changed behavior
• Possible shortcomings of the approach being used
• For complex PRs, a suggested reading order for the reviewer
• The Files tab of a Pull Request page on GitHub allows you to annotate your pull

request with inline comments. These comments are not part of the source files; they
only exist in GitHub’s metadata. Use these comments to explain changes whose
reasoning might not be self-apparent to a reviewer.

6.25.3 Add Tests

Focused PRs should include related test code. A PR that adds or changes logic should be
accompanied by new or updated tests for the new behavior. Pure refactoring PRs should
also be covered by tests—if tests don’t exist for code you’re refactoring, add them in a
separate PR first to validate that behavior is unchanged.

55

6 R Coding Practices

6.25.4 Separate Out Refactorings

It’s usually best to do refactorings in a separate PR from feature changes or bug fixes.
For example, moving and renaming a function should be in a different PR from fixing a
bug in that function. This makes it much easier for reviewers to understand the changes
introduced by each PR.

Small cleanups (like fixing a local variable name) can be included in a feature change or
bug fix PR, but large refactorings should be separate.

6.26 Reviewing Pull Requests

6.26.1 Purpose of Code Review

The primary purpose of code review is to ensure that the overall code health of our projects
improves over time. Reviewers should balance the need to make forward progress with the
importance of maintaining code quality.

Key principle: Reviewers should favor approving a PR once it is in a state where it
definitely improves the overall code health of the system, even if the PR isn’t perfect. There
is no such thing as “perfect” code—there is only better code. Rather than seeking perfection,
seek continuous improvement.

6.26.2 Monitoring PRs Awaiting Your Review

To ensure timely code reviews, bookmark GitHub’s review-requested page and check it
regularly (at least daily):

• General bookmark: https://github.com/pulls/review-requested shows all PRs
across GitHub where you’ve been requested as a reviewer

• Project-specific bookmark: For frequently-reviewed repositories, you can book-
mark project-specific versions using GitHub’s search syntax. For example, to see
PRs awaiting your review in this repository: https://github.com/UCD-SERG/lab-
manual/pulls/review-requested/YOUR-USERNAME (replace YOUR-USERNAME with
your GitHub username)

Checking these pages regularly helps ensure that PRs don’t languish waiting for review,
which is important for maintaining team productivity and code quality.

6.26.3 Writing Review Comments

When reviewing code, maintain courtesy and respect while being clear and helpful:

• Comment on the code, not the author
• Explain why you’re making suggestions (reference best practices, design patterns, or

how the suggestion improves code health)
• Balance pointing out problems with providing guidance (help authors learn while

being constructive)
• Highlight positive aspects too—if you see good practices, comment on those to reinforce

them

56

https://github.com/pulls/review-requested
https://github.com/UCD-SERG/lab-manual/pulls/review-requested/YOUR-USERNAME
https://github.com/UCD-SERG/lab-manual/pulls/review-requested/YOUR-USERNAME

6 R Coding Practices

Poor comment: “Why did you use this approach when there’s obviously a better way?”

Better comment: “This approach adds complexity without clear benefits. Consider using
[alternative approach] instead, which would simplify the logic and improve readability.”

6.26.4 Mentoring Through Review

Code review is an excellent opportunity for mentoring. As a reviewer:

• Leave comments that help authors learn something new
• Link to relevant sections of style guides or best practices documentation
• Consider pair programming for complex reviews—live review sessions can be very

effective for teaching

6.26.5 Giving Constructive Feedback

In general, it is the author’s responsibility to fix a PR, not the reviewer’s. Strike a balance
between pointing out problems and providing direct guidance. Sometimes pointing out
issues and letting the author decide on a solution helps them learn and may result in a
better solution since they are closer to the code.

For very small tweaks (typos, comment additions), use GitHub’s suggestion feature to allow
authors to quickly accept changes directly in the UI.

Figure 6.1: GitHub’s suggestion feature in a PR review comment

6.26.6 Ignoring Auto-Generated Files

When reviewing pull requests in R package repositories, you can typically ignore changes to
.Rd files in the man/ directory. These are R documentation files automatically generated
by {roxygen2}67 from special comments in the R source code (see Section 6.12).

Why ignore .Rd files?

• They are auto-generated and should never be manually edited
• Changes to .Rd files simply reflect changes already visible in the roxygen2 comments
• Reviewing the source roxygen2 comments is more informative and efficient

67https://roxygen2.r-lib.org/

57

https://roxygen2.r-lib.org/

6 R Coding Practices

• The .Rd files will be regenerated during the package build process

What to review instead:

Focus your review on the roxygen2 documentation comments in the actual R source files
(.R files in the R/ directory). These special comments start with #' and appear immediately
before function definitions. Any changes to function documentation will be visible there.

If the repository has a preview workflow (such as pkgdown for R packages or Quarto for
documentation sites), you can also review the rendered documentation in the preview build.
The preview workflow should automatically post a comment on the PR containing a link to
a preview version of the revised documentation.

Figure 6.2: Example of an automated PR preview comment posted by GitHub Actions

GitHub review tip:

In GitHub’s pull request “Files changed” view, you can click the three dots (...) next
to a file and select “View file” to hide it from the diff view. This helps you focus on the
meaningful changes.

6.26.7 Reviewing Copilot-Generated Pull Requests

When reviewing pull requests created by GitHub Copilot coding agents, apply the same
standards and principles as any other PR, but be aware of some unique considerations:

Workflow approval requirements:

• You must manually approve GitHub Actions workflows for Copilot PRs
• This is a security measure because Copilot can modify any file, including workflow

files themselves
• Click the approval button in the Actions tab or on the PR to trigger workflows
• There is currently no way to bypass this manual approval, even if you are the repository

owner

Review focus areas:

• Verify the solution addresses the issue: Ensure Copilot understood the require-
ments correctly

• Check for over-engineering: Copilot may sometimes add unnecessary complexity
or features beyond what was requested

• Review test coverage: Verify that tests are appropriate and comprehensive
• Check documentation: Ensure documentation is clear and follows project conven-

tions

58

6 R Coding Practices

• Look for edge cases: AI-generated code may miss edge cases or error handling

Iterating on Copilot PRs:

When you find issues in a Copilot PR, you have two options:

1. Request changes from Copilot: Leave review comments and ask Copilot to address
them. This works well for complex changes or when you want to see how Copilot
interprets your feedback.

2. Make direct changes yourself: Push commits directly to the Copilot PR branch.
This is often faster for simple fixes like typos, formatting, or small adjustments.

For quick fixes, you can often make changes faster than writing review comments and
waiting for Copilot to respond.

Best practices:

• Don’t push while Copilot is working: Wait for Copilot to complete its current
iteration before pushing your own changes to avoid merge conflicts

• Review incrementally: If a Copilot PR is large, review it in stages as the agent
updates it rather than waiting until the end

• Trust but verify: Copilot is a powerful tool, but human review is essential for
catching issues and ensuring quality

6.27 Creating a Pull Request Template

GitHub allows you to create a pull request template in a repository to standardize the
information in pull requests. When you add a template, everyone will automatically see its
contents in the pull request body.

Follow these steps to add a pull request template:

1. On GitHub, navigate to the main page of the repository.
2. Above the file list, click Create new file.
3. Name the file pull_request_template.md. GitHub will not recognize this as the

template if it is named anything else. The file must be on the default branch.

• To store the file in a hidden directory, name it .github/pull_request_template.md.

4. In the body of the new file, add your pull request template.

Here is an example pull request template:

Description

Summary of change

Please include a summary of the change, including any new functions added and example usage.

Related Issues

Closes #(issue number)
Related to #(issue number)

59

6 R Coding Practices

Testing

Describe how this change has been tested.

Checklist

- [] Tests added/updated
- [] Documentation updated
- [] Code follows project style guidelines

Who should review the pull request?

@username

6.28 Getting Help with Code

When you encounter a coding problem, creating a reprex (minimal reproducible example)
is one of the most effective ways to get help—and often helps you solve the problem
yourself.

A good reprex (Bryan et al. 2024):

• Is reproducible: Contains all necessary code, including library() calls and data
• Is minimal: Strips away everything not directly related to your problem
• Uses small, simple example data (often built-in datasets)

Why create a reprex:

• 80% of the time, creating a reprex helps you discover the solution yourself
• 20% of the time, you’ll have a clear example that makes it easy for others to help you
• It respects others’ time by making your problem easy to understand and reproduce

Resources:

• {reprex}68 package: Automates creation of reproducible examples
• R for Data Science: Making a reprex69 (Wickham, Çetinkaya-Rundel, and Grolemund

2023): Step-by-step guide to creating effective reproducible examples

6.29 Additional Resources

6.29.1 R Package Development

• R Packages (Wickham and Bryan 2023) - comprehensive guide to R package develop-
ment

• Tidyverse design guide (Wickham 2023b) - principles for designing R packages and
APIs that are intuitive, composable, and consistent with tidyverse philosophy

68https://reprex.tidyverse.org/
69https://r4ds.hadley.nz/workflow-help.html#making-a-reprex

60

https://reprex.tidyverse.org/
https://r4ds.hadley.nz/workflow-help.html#making-a-reprex

6 R Coding Practices

• usethis documentation70 - workflow automation for R projects
• devtools documentation71 - essential development tools
• pkgdown documentation72 - create package websites
• testthat documentation73 - unit testing framework

6.29.2 General R Programming

• R for Data Science (Wickham, Çetinkaya-Rundel, and Grolemund 2023) - learn data
science with the tidyverse

• Advanced R (Wickham 2019) - deep dive into R programming and internals

6.29.3 Shiny Development

• Mastering Shiny (Wickham 2021) - comprehensive guide to building web applications
with Shiny

• Engineering Production-Grade Shiny Apps (Fay et al. 2021) - best practices for
production Shiny applications

6.29.4 Git and Version Control

• Happy Git and GitHub for the useR (Bryan 2023) - essential guide to using Git and
GitHub with R

• {gitdown}74 - R package for documenting git commit history as a bookdown report,
organized by patterns like tags or issues

70https://usethis.r-lib.org/
71https://devtools.r-lib.org/
72https://pkgdown.r-lib.org/
73https://testthat.r-lib.org/
74https://thinkr-open.github.io/gitdown/

61

https://usethis.r-lib.org/
https://devtools.r-lib.org/
https://pkgdown.r-lib.org/
https://testthat.r-lib.org/
https://thinkr-open.github.io/gitdown/

6 R Coding Practices

Listing 6.1 .github/workflows/benchmark.yaml

name: Benchmark

on:
pull_request:

branches: [main, master]
workflow_dispatch: # Manual trigger

jobs:
benchmark:

runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v4

- uses: r-lib/actions/setup-r@v2
with:

use-public-rspm: true

- uses: r-lib/actions/setup-r-dependencies@v2
with:

extra-packages: any::bench, any::profvis

- name: Run benchmarks
run: |

library(bench)
library(mypackage)

Create benchmarks directory if it doesn't exist
dir.create("tests/benchmarks", recursive = TRUE, showWarnings = FALSE)

Generate test data (or load existing test data)
test_data <- generate_test_cohort(n = 10000)

Run benchmark
results <- bench::mark(
current_implementation = analyze_cohort(test_data),
iterations = 100

)

Save results
saveRDS(results, "tests/benchmarks/current.rds")

shell: Rscript {0}

- name: Compare with baseline
run: |

Load baseline and current results
baseline <- readRDS("tests/benchmarks/baseline.rds")
current <- readRDS("tests/benchmarks/current.rds")

Calculate percentage change in median time
baseline_time <- as.numeric(baseline$median[1])
current_time <- as.numeric(current$median[1])
pct_change <- (current_time - baseline_time) / baseline_time * 100

Report results
cat(sprintf("Performance change: %.1f%%\n", pct_change))

Fail if performance degrades by >10%
if (pct_change > 10) {
stop(sprintf("Performance regression: %.1f%% slower", pct_change))

}
shell: Rscript {0}

62

7 Continuous Integration

7.1 Understanding GitHub Actions

GitHub Actions1 is GitHub’s built-in automation platform that makes it easy to automate
software workflows, including continuous integration and deployment (CI/CD). For R
packages, this means you can automatically test your code, check for errors, and deploy
documentation every time you push changes to GitHub.

Key benefits of GitHub Actions:

• Automated testing: Run R CMD check across multiple operating systems (Linux,
macOS, Windows) and R versions

• Immediate feedback: Get notified of problems quickly, when they’re easier to fix
• Better collaboration: External contributors can see if their changes pass all checks

before you review
• Quality assurance: Catch platform-specific issues before they reach users
• Documentation deployment: Automatically build and deploy your pkgdown

website

Even for solo developers, having automated checks run on different platforms helps avoid
the “works on my machine” problem.

7.2 Setting Up GitHub Actions

The easiest way to add GitHub Actions to your R package is using {usethis}. The tidyverse
team maintains a collection of ready-to-use workflows at r-lib/actions2 that handle common
R package tasks.

7.2.1 Essential Workflows

1. R CMD check (most important):

usethis::use_github_action("check-standard")

This runs R CMD check on Linux, macOS, and Windows to ensure your package works
across platforms. If you only set up one workflow, make it this one.

2. Test coverage:

1https://github.com/features/actions
2https://github.com/r-lib/actions

63

https://github.com/features/actions
https://github.com/r-lib/actions

7 Continuous Integration

usethis::use_github_action("test-coverage")

Calculates what percentage of your code is covered by tests and reports to codecov.io3.

3. Package website:

usethis::use_github_action("pkgdown")

Automatically builds and deploys your pkgdown documentation site to GitHub Pages.

7.2.2 Interactive Setup

Running usethis::use_github_action() without arguments shows a menu of recom-
mended workflows:

usethis::use_github_action()
#> Which action do you want to add? (0 to exit)
#> (See <https://github.com/r-lib/actions/tree/v2/examples> for other options)
#>
#> 1: check-standard: Run `R CMD check` on Linux, macOS, and Windows
#> 2: test-coverage: Compute test coverage and report to https://about.codecov.io
#> 3: pr-commands: Add /document and /style commands for pull requests

7.3 How GitHub Actions Workflows Work

When you set up a workflow, usethis creates a YAML configuration file in
.github/workflows/. For example, check-standard creates .github/workflows/R-
CMD-check.yaml.

This workflow automatically runs when you:

• Push commits to main or master
• Open or update a pull request

You can view workflow results in the “Actions” tab of your GitHub repository. A status
badge is added to your README showing whether checks are passing.

7.4 Workflow Files and Security

Exclamation-Triangle Warning

Important Security Consideration
Workflow files (.github/workflows/*.yaml) have access to repository secrets and
can execute code. Always review workflow files carefully before committing them,
especially if copied from external sources.
See Section 18.5.8 for guidance on working with workflow files using AI tools.

3https://about.codecov.io

64

https://about.codecov.io

7 Continuous Integration

The workflow YAML files in .github/workflows/ are configuration files that tell GitHub
Actions:

• When to run (on push, pull request, schedule, etc.)
• What operating systems and R versions to use
• What steps to execute (install dependencies, run checks, etc.)

7.5 Troubleshooting Failed Workflows

When workflows fail, check the “Actions” tab in your GitHub repository for detailed logs.
Common issues include:

• Test failures: Your tests found a bug (this is good! fix the bug)
• Platform-specific issues: Code works on your machine but not on other platforms
• Missing dependencies: System libraries needed for packages aren’t installed
• Linting errors: Code style issues detected by automated checks

For help addressing workflow failures, see Section 18.5.6.

7.6 Pull Request Comment Automation

GitHub Actions can automatically comment on pull requests to provide feedback, status
updates, or deployment previews. This section compares commonly used actions for
managing PR comments, helping you choose the right tool for your workflow.

7.6.0.1 Common Use Cases

PR comment automation is particularly useful for:

• CI/CD status updates: Report test results, build status, or deployment progress
• Code quality reports: Post coverage reports, linting results, or security scan findings

• Deployment previews: Share links to preview deployments (e.g., documentation
sites, app previews)

• Bot feedback: Provide automated feedback without cluttering the PR conversation

7.6.0.2 Comparison of Popular Actions

marocchino/sticky-pull-request-comment4

A widely-used action for creating or updating a single comment per workflow (as of early
2026, ~580 GitHub stars). Prevents comment spam by updating the same comment each
time the workflow runs.

Key features:

• Sticky comments: Creates or updates a comment identified by a unique header

4https://github.com/marocchino/sticky-pull-request-comment

65

https://github.com/marocchino/sticky-pull-request-comment

7 Continuous Integration

• Multiple independent comments: Different workflows can maintain separate
sticky comments using different headers

• Flexible update modes: Replace, append, recreate, delete, or hide comments
• File-based messages: Load comment content from files for complex templates
• Works with push events: Can find and comment on PRs from push triggers (useful

for monorepos)

Typical usage:

- uses: marocchino/sticky-pull-request-comment@v2
with:

header: test-results
message: |

Test Results
```
${{ steps.test.outputs.summary }}
```

Best for: Projects needing clean, updatable status comments without duplicates. Ideal
when you want the same type of information always visible in one place.

hasura/comment-progress5

Designed for tracking workflow progress with multiple updates as jobs complete. Similar to
how Netlify or SonarCloud bots provide progressive feedback.

Key features:

• Progress tracking: Update comments as workflow steps complete or fail
• Identifier-based updates: Uses a hidden identifier to find and update the correct

comment
• Multiple update modes: Append to existing comments, recreate, or delete
• Flexible targets: Comment on PRs, issues, or specific commits
• Failure handling: Optionally fail the workflow and append failure messages

Typical usage:

- uses: hasura/comment-progress@v2.3.0
with:

github-token: ${{ secrets.GITHUB_TOKEN }}
repository: ${{ github.repository }}
number: ${{ github.event.number }}
id: deploy-progress
message: "Deploy in progress..."
append: true

Best for: Long-running workflows where you want to provide incremental status updates as
different stages complete. Good for deployment pipelines or multi-stage builds.

thollander/actions-comment-pull-request6

5https://github.com/hasura/comment-progress
6https://github.com/thollander/actions-comment-pull-request

66

https://github.com/hasura/comment-progress
https://github.com/thollander/actions-comment-pull-request

7 Continuous Integration

A simpler, more straightforward action for posting or updating PR comments. Good balance
of features and ease of use.

Key features:

• Simple comment creation: Easy to post one-time or updated comments
• Comment updates: Find and update existing comments by ID or content
• Reactions: Add emoji reactions to comments
• Comment deletion: Remove comments when no longer needed
• Dynamic content: Supports multi-line messages and environment variables

Typical usage:

- uses: thollander/actions-comment-pull-request@v2
with:

message: |
Deployment Status
� Successfully deployed to preview environment
Preview URL: https://preview-${{ github.event.number }}.example.com

Best for: Straightforward commenting needs without complex update logic. Good for simple
status messages or one-time notifications.

7.6.0.3 Feature Comparison

Table 7.1: Comparison of PR comment action features

Feature marocchino/sticky
hasura/comment-
progress thollander/actions-comment

Update
existing
comment

� (by header) � (by identifier) � (by ID or content)

Multiple
indepen-
dent
com-
ments

� (via headers) � (via identifiers) � (limited)

Append
mode

� � �

Delete
com-
ments

� � �

Hide
com-
ments

� � �

File-
based
messages

� � �

Emoji
reactions

� � �

67

7 Continuous Integration

Feature marocchino/sticky
hasura/comment-
progress thollander/actions-comment

Works
with
push
events

� � (requires PR number) � (requires PR number)

Progress
tracking
focus

� (flexible) � �

7.6.0.4 Choosing the Right Action

Use marocchino/sticky-pull-request-comment when:

• You need to maintain multiple independent status comments (test results, coverage,
deployment, etc.)

• You want to prevent comment spam by updating the same comment
• You need advanced features like hiding outdated comments or file-based templates
• Your workflow triggers on push events and needs to find the associated PR

Use hasura/comment-progress when:

• You have long-running workflows with multiple stages
• You want to provide progressive feedback as each stage completes
• You need the workflow to fail and report the failure in the comment
• You want a pattern similar to third-party CI/CD service bots

Use thollander/actions-comment-pull-request when:

• You need simple comment posting without complex update logic
• You want to add emoji reactions to comments
• You’re comfortable with the action’s simpler update mechanism
• Your use case doesn’t require the advanced features of the other options

7.6.0.5 Security Considerations

Exclamation-Triangle Warning

Important: PR Comment Permissions
PR comment actions require write access to pull requests, which means they need the
pull-requests: write permission.
For workflows triggered by pull requests from forks (common in open-source projects),
be careful about what information you expose in comments, as fork contributors can
trigger these workflows. Never expose secrets or sensitive information in PR comments.
See Section 18.5.8 for more guidance on workflow security.

68

7 Continuous Integration

7.7 Additional Resources

• GitHub Actions features overview7

• r-lib/actions repository8 - R-specific actions and example workflows
• R Packages book: Continuous Integration9

• GitHub Actions documentation10

• Where to find help with r-lib/actions11

7https://github.com/features/actions
8https://github.com/r-lib/actions
9https://r-pkgs.org/software-development-practices.html#sec-sw-dev-practices-ci

10https://docs.github.com/en/actions
11https://github.com/r-lib/actions#where-to-find-help

69

https://github.com/features/actions
https://github.com/r-lib/actions
https://r-pkgs.org/software-development-practices.html#sec-sw-dev-practices-ci
https://docs.github.com/en/actions
https://github.com/r-lib/actions#where-to-find-help

8 R Code Style

Adapted by UCD-SeRG team from original by Kunal Mishra, Jade Benjamin-Chung, and
Stephanie Djajadi1

Follow these code style guidelines for all R code:

8.1 General Principles

• Follow tidyverse style guide: https://style.tidyverse.org
• Use native pipe: |> not %>% (available in R >= 4.1.0)
• Naming: Use snake_case for functions and variables; acronyms may be uppercase

(e.g., prep_IDs_data)
• Write tidy code: Keep code clean, readable, and well-organized
• Avoid redundant logical comparisons: Use logical variables directly in conditional

statements (e.g., if (x) instead of if (x == TRUE) or if (x == 1))
• Use pipes to emphasize primary inputs: When writing functions and code, use

the pipe operator to clearly show transformations on a primary object. The primary
input should flow as the first argument to each function in the chain. Design functions
so the most important argument (usually data) comes first, enabling natural pipeline
composition. See the tidyverse design principles2 for more details.

8.2 Function Structure and Documentation

Every function should follow this pattern:

#' Short Title (One Line)
#'
#' Longer description providing details about what the function does,
#' when to use it, and important considerations.
#'
#' @param param1 Description of first parameter, including type and constraints
#' @param param2 Description of second parameter
#'
#' @returns Description of return value, including type and structure
#'
#' @examples
#' # Example usage
#' result <- my_function(param1 = "value", param2 = 10)
#'

1https://jadebc.github.io/lab-manual/coding-style.html
2https://design.tidyverse.org/important-args-first.html

70

https://jadebc.github.io/lab-manual/coding-style.html
https://design.tidyverse.org/important-args-first.html

8 R Code Style

#' @export
my_function <- function(param1, param2) {
Implementation

}

See also Section 6.12 for general code documentation practices.

8.3 Comments

Use comments to explain why, not what:

Good: Explains reasoning
Use log scale because distribution is highly skewed
ggplot(data, aes(x = log10(income))) + geom_histogram()

Bad: States the obvious
Create a histogram
ggplot(data, aes(x = income)) + geom_histogram()

File headers (for scripts in data-raw/ or inst/analyses/):

##
@Organization - Example Organization
@Project - Example Project
@Description - This file is responsible for [...]
##

File Structure - Just as your data “flows” through your project, data should flow naturally
through a script. Very generally, you want to

1) source your config =>
2) load all your data =>
3) do all your analysis/computation => save your data.

Each of these sections should be “chunked together” using comments. See this file3 for
a good example of how to cleanly organize a file in a way that follows this “flow” and
functionally separate pieces of code that are doing different things.

INFO Note

If your computer isn’t able to handle this workflow due to RAM or requirements,
modifying the ordering of your code to accommodate it won’t be ultimately helpful
and your code will be fragile, not to mention less readable and messy. You need to
look into high-performance computing (HPC) resources in this case.

Single-Line Comments - Commenting your code is an important part of reproducibility
and helps document your code for the future. When things change or break, you’ll be

3https://github.com/kmishra9/Flu-Absenteeism/blob/master/Master's%20Thesis%20-%20Spatial%
20Epidemiology%20of%20Influenza/2a%20-%20Statistical-Inputs.R

71

https://github.com/kmishra9/Flu-Absenteeism/blob/master/Master's%20Thesis%20-%20Spatial%20Epidemiology%20of%20Influenza/2a%20-%20Statistical-Inputs.R
https://github.com/kmishra9/Flu-Absenteeism/blob/master/Master's%20Thesis%20-%20Spatial%20Epidemiology%20of%20Influenza/2a%20-%20Statistical-Inputs.R

8 R Code Style

thankful for comments. There’s no need to comment excessively or unnecessarily, but a
comment describing what a large or complex chunk of code does is always helpful. See this
file4 for an example of how to comment your code and notice that comments are always in
the form of:

This is a comment -- first letter is capitalized and spaced away from the pound sign

Multi-Line Comments - Occasionally, multi-line comments are necessary. You should
manually insert line breaks to “hard-wrap” code and comments, whenever lines become
longer than 80 characters. lintr should object otherwise, even for comments. Try to break
lines at semantic boundaries: ends of sentences or phrases. Long lines in source code files
make it more difficult to see and comment on diffs in pull requests.

In prose text chunks, Quarto ignores single line breaks, so you should also line-break your
prose text in .qmd files to keep them under 80 characters.

You can configure RStudio’s settings to display the 80-character margin.

8.4 Line Breaks and Formatting

Blank Lines Before Lists

Always include a blank line before starting a bullet list or numbered list in markdown/Quarto
documents. This ensures proper rendering and readability.

Correct:

Here are the requirements:

- First item
- Second item

Incorrect:

Here are the requirements:
- First item
- Second item

Here’s what happens if you don’t add the blank line:

Here are the requirements: - First item - Second item

Line Breaks in Code

• For ggplot calls and dplyr pipelines, do not crowd single lines. Here are some
nontrivial examples of “beautiful” pipelines, where beauty is defined by coherence:

4https://github.com/kmishra9/Flu-Absenteeism/blob/master/Master's%20Thesis%20-%20Spatial%
20Epidemiology%20of%20Influenza/1b%20-%20Map-Management.R

72

https://github.com/kmishra9/Flu-Absenteeism/blob/master/Master's%20Thesis%20-%20Spatial%20Epidemiology%20of%20Influenza/1b%20-%20Map-Management.R
https://github.com/kmishra9/Flu-Absenteeism/blob/master/Master's%20Thesis%20-%20Spatial%20Epidemiology%20of%20Influenza/1b%20-%20Map-Management.R

8 R Code Style

Example 1
school_names = list(
OUSD_school_names = absentee_all |>

filter(dist.n == 1) |>
pull(school) |>
unique |>
sort,

WCCSD_school_names = absentee_all |>
filter(dist.n == 0) |>
pull(school) |>
unique |>
sort

)

Example 2
absentee_all = fread(file = raw_data_path) |>
mutate(program = case_when(schoolyr %in% pre_program_schoolyrs ~ 0,

schoolyr %in% program_schoolyrs ~ 1)) |>
mutate(period = case_when(schoolyr %in% pre_program_schoolyrs ~ 0,

schoolyr %in% LAIV_schoolyrs ~ 1,
schoolyr %in% IIV_schoolyrs ~ 2)) |>

filter(schoolyr != "2017-18")

And of a complex ggplot call:

Example 3
ggplot(data=data) +

aes(x=.data[["year"]], y=.data[["rd"]], group=.data[[group]]) +

geom_point(mapping = aes(col = .data[[group]], shape = .data[[group]]),
position=position_dodge(width=0.2),
size=2.5) +

geom_errorbar(mapping = aes(ymin=.data[["lb"]], ymax= .data[["ub"]], col= .data[[group]]),
position=position_dodge(width=0.2),
width=0.2) +

geom_point(position=position_dodge(width=0.2),
size=2.5) +

geom_errorbar(mapping=aes(ymin=lb, ymax=ub),
position=position_dodge(width=0.2),
width=0.1) +

scale_y_continuous(limits=limits,
breaks=breaks,
labels=breaks) +

73

8 R Code Style

scale_color_manual(std_legend_title,values=cols,labels=legend_label) +
scale_shape_manual(std_legend_title,values=shapes, labels=legend_label) +
geom_hline(yintercept=0, linetype="dashed") +
xlab("Program year") +
ylab(yaxis_lab) +
theme_complete_bw() +
theme(strip.text.x = element_text(size = 14),

axis.text.x = element_text(size = 12)) +
ggtitle(title)

Imagine (or perhaps mournfully recall) the mess that can occur when you don’t strictly
style a complicated ggplot call. Trying to fix bugs and ensure your code is working can
be a nightmare. Now imagine trying to do it with the same code 6 months after you’ve
written it. Invest the time now and reap the rewards as the code practically explains itself,
line by line.

8.5 Markdown and Quarto Formatting

8.5.1 Writing about code in Quarto documents

When writing about code in prose sections of quarto documents, use backticks to apply a
code style: for example, dplyr::mutate(). When talking about packages, use backticks
and curly-braces with a hyperlink to the package website. For example: {dplyr}5.

Important: Do not use raw HTML () in .qmd files. Always use
Quarto/markdown link syntax instead.

8.6 Messaging and User Communication

Use cli package functions for all user-facing messages in package functions:

Good
cli::cli_inform("Analysis complete")
cli::cli_warn("Missing data detected")
cli::cli_abort("Invalid input: {x}")

Bad - don't use these in package code
message("Analysis complete")
warning("Missing data detected")
stop("Invalid input")

5https://dplyr.tidyverse.org/

74

https://dplyr.tidyverse.org/

8 R Code Style

8.7 Package Code Practices

• No library() in package code: Use :: notation or declare in DESCRIPTION
Imports

• Document all exports: Use roxygen2 (@title, @description, @param, @returns,
@examples)

• Avoid code duplication: Extract repeated logic into helper functions

8.8 Tidyverse Replacements

Use modern tidyverse/alternatives for base R functions:

Data structures
tibble::tibble() # instead of data.frame()
tibble::tribble() # instead of manual data.frame creation

I/O
readr::read_csv() # instead of read.csv()
readr::write_csv() # instead of write.csv()
readr::read_rds() # instead of readRDS()
readr::write_rds() # instead of saveRDS()

Data manipulation
dplyr::bind_rows() # instead of rbind()
dplyr::bind_cols() # instead of cbind()

String operations
stringr::str_which() # instead of grep()
stringr::str_replace() # instead of gsub()

Date/time operations
lubridate::NA_Date_ # instead of as.Date(NA)

Session info
sessioninfo::session_info() # instead of sessionInfo()

See also Section 6.18.

8.9 The here Package

The here package helps manage file paths in projects by automatically finding the project
root and building paths relative to it:

library(here)

Automatically finds project root and builds paths
data <- readr::read_csv(here("data-raw", "survey.csv"))
saveRDS(results, here("inst", "analyses", "results.rds"))

75

8 R Code Style

This solves the problem of different working directory paths across collaborators. For exam-
ple, one person might have the project at /home/oski/Some-R-Project while another has it
at /home/bear/R-Code/Some-R-Project. The here package handles this automatically.

This works regardless of where collaborators clone the repository. For more details, see the
here package vignette6.

See also Section 6.15 for detailed explanation of the here package.

8.10 Object Naming

Use descriptive names that are both expressive and explicit. Being verbose is useful and
easy in the age of autocompletion:

Good
vaccination_coverage_2017_18
absentee_flu_residuals

Less good
vaxcov_1718
flu_res

Prefer nouns for objects and verbs for functions:

Good
clean_data <- prep_study_data(raw_data) # verb for function, noun for object

Less clear
data <- process(input)

Generally we recommend using nouns for objects and verbs for functions. This is because
functions are performing actions, while objects are not.

Use snake_case for all variable and function names. Avoid using . in names (as in base
R’s read.csv()), as this goes against best practices in modern R and other languages.
Modern packages like readr::read_csv() follow this convention.

Try to make your variable names both more expressive and more explicit. Being a bit more
verbose is useful and easy in the age of autocompletion! For example, instead of naming a
variable vaxcov_1718, try naming it vaccination_coverage_2017_18. Similarly, flu_res
could be named absentee_flu_residuals, making your code more readable and explicit.

Base R allows . in variable names and functions (such as read.csv()), but this goes
against best practices for variable naming in many other coding languages. For consistency’s

6https://github.com/jennybc/here_here

76

https://github.com/jennybc/here_here

8 R Code Style

sake, snake_case has been adopted across languages, and modern packages and functions
typically use it (i.e. readr::read_csv()). As a very general rule of thumb, if a package
you’re using doesn’t use snake_case, there may be an updated version or more modern
package that does, bringing with it the variety of performance improvements and bug fixes
inherent in more mature and modern software.

INFO Note

You may also see camelCase throughout the R code you come across. This is okay
but not ideal – try to stay consistent across all your code with snake_case.

INFO Note

Again, it’s also worth noting there’s nothing inherently wrong with using . in variable
names, just that it goes against style best practices that are cropping up in data
science, so it’s worth getting rid of these bad habits now.

For more help, check out Be Expressive: How to Give Your Variables Better Names7

8.11 Automated Tools for Style and Project Workflow

8.11.1 Styling

8.11.1.1 RStudio shortcuts

1. Code Autoformatting - RStudio includes a fantastic built-in utility (keyboard
shortcut: CMD-Shift-A (Mac) or Ctrl-Shift-A (Windows/Linux)) for autoformatting
highlighted chunks of code to fit many of the best practices listed here. It generally
makes code more readable and fixes a lot of the small things you may not feel like
fixing yourself. Try it out as a “first pass” on some code of yours that doesn’t follow
many of these best practices!

2. Assignment Aligner - A cool R package8 allows you to very powerfully format large
chunks of assignment code to be much cleaner and much more readable. Follow the
linked instructions and create a keyboard shortcut of your choosing (recommendation:
CMD-Shift-Z). Here is an example of how assignment aligning can dramatically
improve code readability:

7https://spin.atomicobject.com/2017/11/01/good-variable-names/
8https://www.r-bloggers.com/align-assign-rstudio-addin-to-align-assignment-operators/

77

https://spin.atomicobject.com/2017/11/01/good-variable-names/
https://www.r-bloggers.com/align-assign-rstudio-addin-to-align-assignment-operators/

8 R Code Style

Before
OUSD_not_found_aliases = list(
"Brookfield Village Elementary" = str_subset(string = OUSD_school_shapes$schnam, pattern = "Brookfield"),
"Carl Munck Elementary" = str_subset(string = OUSD_school_shapes$schnam, pattern = "Munck"),
"Community United Elementary School" = str_subset(string = OUSD_school_shapes$schnam, pattern = "Community United"),
"East Oakland PRIDE Elementary" = str_subset(string = OUSD_school_shapes$schnam, pattern = "East Oakland Pride"),
"EnCompass Academy" = str_subset(string = OUSD_school_shapes$schnam, pattern = "EnCompass"),
"Global Family School" = str_subset(string = OUSD_school_shapes$schnam, pattern = "Global"),
"International Community School" = str_subset(string = OUSD_school_shapes$schnam, pattern = "International Community"),
"Madison Park Lower Campus" = "Madison Park Academy TK-5",
"Manzanita Community School" = str_subset(string = OUSD_school_shapes$schnam, pattern = "Manzanita Community"),
"Martin Luther King Jr Elementary" = str_subset(string = OUSD_school_shapes$schnam, pattern = "King"),
"PLACE @ Prescott" = "Preparatory Literary Academy of Cultural Excellence",
"RISE Community School" = str_subset(string = OUSD_school_shapes$schnam, pattern = "Rise Community")

)

After
OUSD_not_found_aliases = list(
"Brookfield Village Elementary" = str_subset(string = OUSD_school_shapes$schnam, pattern = "Brookfield"),
"Carl Munck Elementary" = str_subset(string = OUSD_school_shapes$schnam, pattern = "Munck"),
"Community United Elementary School" = str_subset(string = OUSD_school_shapes$schnam, pattern = "Community United"),
"East Oakland PRIDE Elementary" = str_subset(string = OUSD_school_shapes$schnam, pattern = "East Oakland Pride"),
"EnCompass Academy" = str_subset(string = OUSD_school_shapes$schnam, pattern = "EnCompass"),
"Global Family School" = str_subset(string = OUSD_school_shapes$schnam, pattern = "Global"),
"International Community School" = str_subset(string = OUSD_school_shapes$schnam, pattern = "International Community"),
"Madison Park Lower Campus" = "Madison Park Academy TK-5",
"Manzanita Community School" = str_subset(string = OUSD_school_shapes$schnam, pattern = "Manzanita Community"),
"Martin Luther King Jr Elementary" = str_subset(string = OUSD_school_shapes$schnam, pattern = "King"),
"PLACE @ Prescott" = "Preparatory Literary Academy of Cultural Excellence",
"RISE Community School" = str_subset(string = OUSD_school_shapes$schnam, pattern = "Rise Community")

)

8.11.1.2 {styler}9

{styler}10 is another cool R package from the Tidyverse11 that can be powerful and used
as a first pass on entire projects that need refactoring. The most useful function of the
package is the style_dir function, which will style all files within a given directory. See
the function’s documentation12 and the vignette linked above for more details.

INFO Note

The default Tidyverse styler is subtly different from some of the things we’ve advo-
cated for in this document. Most notably we differ with regards to the assignment
operator (<- vs =) and number of spaces before/after “tokens” (i.e. Assignment Aligner
add spaces before = signs to align them properly). For this reason, we’d recom-

9https://styler.r-lib.org/
10https://styler.r-lib.org/
11https://tidyverse.org/blog/2017/12/styler-1.0.0/
12https://www.rdocumentation.org/packages/styler/versions/1.1.0/topics/style_dir

78

https://styler.r-lib.org/
https://styler.r-lib.org/
https://tidyverse.org/blog/2017/12/styler-1.0.0/
https://www.rdocumentation.org/packages/styler/versions/1.1.0/topics/style_dir

8 R Code Style

mend the following: style_dir(path = ..., scope = "line_breaks", strict =
FALSE). You can also customize {styler}a even moreb if you’re really hardcore.

ahttps://styler.r-lib.org/
bhttp://styler.r-lib.org/articles/customizing_styler.html

INFO Note

As is mentioned in the package vignette linked above, {styler}a modifies things
in-place, meaning it overwrites your existing code and replaces it with the updated,
properly styled code. This makes it a good fit on projects with version control, but if
you don’t have backups or a good way to revert back to the initial code, I wouldn’t
recommend going this route.

ahttps://styler.r-lib.org/

LIGHTBULB styler Package

For automated styling of entire projects:

Install styler
install.packages("styler")

Style all files in R/ directory
styler::style_dir("R/")

Style entire package
styler::style_pkg()

Note: styler modifies files in-place
Always use with version control so you can review changes

8.11.1.3 {lintr}13

Linters are programming tools that check adherence to a given style, syntax errors, and
possible semantic issues. The R linter, called lintr, can be found in this package14. It helps
keep files consistent across different authors and even different organizations. For example,
it notifies you if you have unused variables, global variables with no visible binding, not
enough or superfluous whitespace, and improper use of parentheses or brackets. A list of its
other purposes can be found in this link15, and most guidelines are based on the Tidyverse
R Style Guide16.

13https://lintr.r-lib.org/
14https://www.rdocumentation.org/packages/lintr/versions/1.0.3
15https://cran.r-project.org/web/packages/lintr/readme/README.html#available-linters
16https://style.tidyverse.org/

79

https://styler.r-lib.org/
http://styler.r-lib.org/articles/customizing_styler.html
https://styler.r-lib.org/
https://lintr.r-lib.org/
https://www.rdocumentation.org/packages/lintr/versions/1.0.3
https://cran.r-project.org/web/packages/lintr/readme/README.html#available-linters
https://style.tidyverse.org/

8 R Code Style

INFO Note

You can customize your settings to set defaults or to exclude files. More details can
be found herea.

ahttps://cran.r-project.org/web/packages/lintr/readme/README.html#project-configuration

INFO Note

The lintr package goes hand in hand with the styler package. The styler can be
used to automatically fix the problems that the lintr catches.

LIGHTBULB lintr package

For checking code style without modifying files:

Install lintr
install.packages("lintr")

Lint the entire package
lintr::lint_package()

Lint a specific file
lintr::lint("R/my_function.R")

The linter checks for:

• Unused variables
• Improper whitespace
• Line length issues
• Style guide violations

You can customize linting rules by creating a .lintr or lintr.R file in your project
root.

8.12 Additional Resources

• Tidyverse style guide (Wickham 2023a): Detailed coding style conventions for writing
clear, consistent R code. Covers naming, syntax, pipes, functions, and more.

80

https://cran.r-project.org/web/packages/lintr/readme/README.html#project-configuration

9 Big data

Adapted by UCD-SeRG team from original by Kunal Mishra and Jade Benjamin-Chung1

9.1 The data.table package

It may also be the case that you’re working with very large datasets. Generally I would
define this as 10+ million rows. As is outlined in this document, the 3 main players in the
data analysis space are Base R, Tidvyerse (more specificially, dplyr), and data.table.
For a majority of things, Base R is inferior to both dplyr and data.table, with concise
but less clear syntax and less speed. Dplyr is architected for medium and smaller data,
and while its very fast for everyday usage, it trades off maximum performance for ease of
use and syntax compared to data.table. An overview of the dplyr vs data.table debate
can be found in this stackoverflow post2 and all 3 answers are worth a read.

You can also achieve a performance boost by running dplyr commands on data.tables,
which I find to be the best of both worlds, given that a data.table is a special type of
data.frame and fairly easy to convert with the as.data.table() function. The speedup
is due to dplyr’s use of the data.table backend and in the future this coupling should
become even more natural.

If you want to test whether using a certain coding approach increases speed, consider the
tictoc package. Run tic() before a code chunk and toc() after to measure the amount
of system time it takes to run the chunk. For example, you might use this to decide if you
really need to switch a code chunk from dplyr to data.table.

9.2 Using downsampled data

In our studies with very large datasets, we save “downsampled” data that usually includes
a 1% random sample stratified by any important variables, such as year or household id.
This allows us to efficiently write and test our code without having to load in large, slow
datasets that can cause RStudio to freeze. Be very careful to be sure which dataset you are
working with and to label results output accordingly.

9.3 Optimal RStudio set up

Using the following settings will help ensure a smooth experience when working with big
data. In RStudio, go to the “Tools” menu, then select “Global Options”. Under “General”:

Workspace
1https://jadebc.github.io/lab-manual/working-with-big-data.html
2https://stackoverflow.com/questions/21435339/data-table-vs-dplyr-can-one-do-something-well-the-other-

cant-or-does-poorly/27840349#27840349

81

https://jadebc.github.io/lab-manual/working-with-big-data.html
https://stackoverflow.com/questions/21435339/data-table-vs-dplyr-can-one-do-something-well-the-other-cant-or-does-poorly/27840349#27840349
https://stackoverflow.com/questions/21435339/data-table-vs-dplyr-can-one-do-something-well-the-other-cant-or-does-poorly/27840349#27840349

9 Big data

• Uncheck Restore RData into workspace at startup
• Save workspace to RData on exit – choose never

History

• Uncheck Always save history

Unfortunately RStudio often gets slow and/or freezes after hours working with big datasets.
Sometimes it is much more efficient to just use Terminal / gitbash to run code and make
updates in git.

82

10 Data masking

Adapted by UCD-SeRG team from original by Anna Nguyen, Jade Benjamin-Chung, and
Gabby Barratt Heitmann1

For information about UC Davis computing resources for data-intensive work, see Chap-
ter 17.

10.1 General Overview

This chapter covers data masking, a unique process in R in which columns are treated
as distinct objects within their dataframe’s environment. In our lab, data masking most
frequently comes up when writing wrapper functions where arguments to indicate column
names are supplied as strings. We often do this when we repeat the same code on multiple
columns, and want to apply a function to a vector of strings that correspond to column
names in a dataframe. For example, we might want to clean multiple columns using the
same function or estimate the same model under different feature sets. Here, we try to
break down what data masking is, why this error comes up, and common approaches to
solve this problem.

10.1.1 What is Data Masking?

Within certain tidyverse operations, columns are called as if they were variables. For
example, while running df |> mutate(X = …) R recognizes that X specifically references
a column in df without explicitly stating its membership df |> mutate(df$X = …) or
calling the column name as a string df |> mutate("X" = …).

Figure 10.1: Data masking in tidyverse operations

However, this behavior may introduce errors when we attempt to incorporate variables from
the global environment within these tidyverse pipelines. In the example shown in Figure 10.1,
column_name = "X" followed by df |> mutate(X2 = column_name + 1) would yield an
error, since column_name is not a column in df and the variable column_name is not defined
within the environment of df

1https://jadebc.github.io/lab-manual/data-masking.html

83

https://jadebc.github.io/lab-manual/data-masking.html

10 Data masking

10.1.2 Using tidy evaluation for data masking

In dplyr-based R programming, we make use of tidy evaluation. This allows us to avoid
using base R syntax to reference specific columns in a data frame. By leveraging Tidy
evaluation-based data masking, we can employ long pipes with several dplyr verbs to
manipulate our data using stand-alone variables that store column names as strings.

For example, consider a data frame “df” that contains a column called “heavyrain” that
we want to manipulate. Suppose we wanted to convert the values of “heavyrain” into a
factor.

Using base R, which does not mask data, heavyrain must have quotes to be treated as a
data-variable:

df[["outcome"]] = as.factor(df[["heavyrain"]])

In a dplyr pipe, heavyrain is being masked using tidy evaluation and will be correctly
interpreted as a column because it is recognized as a data-variable: df |> mutate(outcome
= as.factor(heavyrain))

With modified data masking, heavyrain is a string that is coerced into being recognized as
a data-variable:

var_name = "heavyrain"
df |> mutate(outcome = as.factor(!!sym(var_name))

While cleaner and often more convenient, the data frame that var_name is in is now
“masked” and we refer to the vectors in the dataframe (data-variables) as though it is an
object of its own (an environmental-variable). This is why we can just say the variable’s
name in the context of a pipe – we treat it as though it’s an object defined in our environment.
Within normal scripts, this is usually fine, because the data frame is “held on to” in the
pipe. However, it can cause some programming hurdles when writing functions that take
strings of variable/column names as arguments. In the next section, we briefly describe
how to troubleshoot common errors in data masking, as relevant to our lab’s work.

10.2 Technical Overview

This section covers the R functions and tools that we often use in the context of data
masking, focusing on the bang bang operator (!!) with symbol coercion (sym()) and the
Walrus operator (:=).

The combined use of !! and sym() allows us to use strings, rather than data-variables, to
reference column names within dplyr. Together, !!sym("column_name") forces dplyr to
recognize “column_name” as a data-variable prior to evaluating the rest of the expression,
enabling the ability to perform calculations on the column while referring to it as a string.
sym() is a function that turns strings into symbols. In the context of a dplyr pipe, these sym-
bols are interpreted as data-variables. The !! (bang bang) operator tells dplyr to evaluate
the sym() expression first, e.g. to unquote its expression (e.g. “column_name”) and evaluate
it as a pre-existing object, first. This is helpful because often we use sym("column_name")
within a larger expression, and dplyr might evaluate other elements of the expression first
without !!, causing errors.

84

10 Data masking

When we want to create a new column (via mutate or summarize), the Walrus operator
(:=) allows us to specify the new column’s name using a string. For example, while df
|> mutate("new_column" = values) would yield an error, df |> mutate("new_column"
:= values) will correctly create a new column called “new_column”. If we want to use a
variable representing a string, we can use !! to force the variable to be evaluated before
using := to assign the value of the new column.

col_name = "new_column"
df |> mutate(!!col_name := values)

10.2.1 Example

Suppose we want to write a function “generate_descriptive_table” to summarize how the
prevalence of “outcome” varies under different levels of a “risk_factor” in a data frame
“df”

We can start by writing the function shell:

generate_descriptive_table <- function (df, outcome, rf) {
outcome_dist_by_rf <- ….
return(outcome_dist_by_rf)
}

Next, we can filter the data frame for only rows in which “rf” and “outcome” are not
missing. We can use !! and sym() within filter to evaluate the strings stored in “rf” and
“outcome”. Note that defining !!sym(outcome) or !!sym(outcome) in variables outside of
the dplyr pipeline will not work.

generate_descriptive_table <- function (df, outcome, rf,) {
outcome_dist_by_rf <- df |>
filter(!is.na(!!sym(outcome)), !is.na(!!sym(rf))) |>
….
return(outcome_dist_by_rf)

}

Similarly, we use !! and sym() in group_by to evaluate column name, stored as a string in
the argument “rf”

generate_descriptive_table <- function (df, outcome, rf,) {
outcome_dist_by_rf <- df |>
filter(!is.na(!!sym(outcome)), !is.na(!!sym(rf))) |>
….
return(outcome_dist_by_rf)

}

Finally, we can use the walrus operator, !! and sym() with “summarize” to create a new
column that takes the mean of the column referenced in “rf”. We also use “glue” or “paste”
to give the new column an informative name that includes the “outcome” it describes.

85

10 Data masking

generate_descriptive_table <- function (df, outcome, rf,) {
outcome_dist_by_rf <- df |>
filter(!is.na(!!sym(outcome)), !is.na(!!sym(rf))) |>
group_by(!!sym(rf)) |>
summarize(!!(glue::glue("{outcome}_prev")) := mean(!!sym(outcome)))
return(outcome_dist_by_rf)

}

OR

generate_descriptive_table <- function (df, outcome, rf,) {
outcome_dist_by_rf <- df |>
filter(!is.na(!!sym(outcome)), !is.na(!!sym(rf))) |>
group_by(!!sym(rf)) |>
summarize(!!(paste0(outcome, "_prev")) := mean(!!sym(outcome)))
return(outcome_dist_by_rf)

}

OR

generate_descriptive_table <- function (df, outcome, rf,) {
new_column_name = paste0(outcome, "_prev")
outcome_dist_by_rf <- df |>
filter(!is.na(!!sym(outcome)), !is.na(!!sym(rf))) |>
group_by(!!sym(rf)) |>
summarize(!!(new_column_name) := mean(!!sym(outcome)))
return(outcome_dist_by_rf)

}

86

11 Quarto

11.1 Introduction

Quarto1 is an open-source scientific and technical publishing system that allows you to
create documents, books, websites, presentations, and more. Quarto provides a unified
authoring framework for data science, combining your code, its results, and your prose.
Quarto documents are fully reproducible and support dozens of output formats, like PDFs,
Word files, presentations, and more.

Quarto files are designed to be used in three ways:

1. For communicating to decision-makers, who want to focus on the conclusions,
not the code behind the analysis.

2. For collaborating with other data scientists (including future you!), who are
interested in both your conclusions, and how you reached them (i.e., the code).

3. As an environment in which to do data science, as a modern-day lab notebook
where you can capture not only what you did, but also what you were thinking.

11.1.1 Key Features

Multi-format Output: Quarto documents can be rendered into HTML, PDF, MS Word,
ePub, PowerPoint, Revealjs presentations, dashboards, websites, and books from a single
source file. This allows authors to maintain one document but publish it in multiple formats
without rewriting content.

Rich Markdown Authoring: Content is created in markdown, with support for figures,
tables, equations (LaTeX), citations, cross-references, and advanced layout features like
tabs, callouts, and panels.

Embedded Executable Code: Integrate code chunks (R, Python, Julia, Observable JS)
that can be executed and the results rendered directly in the document. This allows for
dynamic results, data analysis, plots, and reproducible research workflows.

Interactivity: Add interactive components such as widgets, tab sets, and collapsible
sections for richer communication with readers.

Customization: Extensive theming and styling options, including custom CSS and
advanced layout controls for polished, publication-quality output.

Project Management: Organize large projects and integrate with version control tools
like Git. Use Quarto projects to group related documents, manage dependencies, and
orchestrate rendering.

1https://quarto.org/

87

https://quarto.org/

11 Quarto

11.1.2 Why Quarto?

If you’re an R Markdown user, you might be thinking “Quarto sounds a lot like R Markdown.”
You’re not wrong! Quarto unifies the functionality of many packages from the R Markdown
ecosystem (rmarkdown, bookdown, distill, xaringan, etc.) into a single consistent system
as well as extends it with native support for multiple programming languages like Python
and Julia in addition to R. In a way, Quarto reflects everything that was learned from
expanding and supporting the R Markdown ecosystem over a decade.

11.1.3 Getting Started

To get started with Quarto:

• Installation: Quarto CLI is included with RStudio, so if you have a recent version
of RStudio, you already have Quarto. Otherwise, visit https://quarto.org/docs/get-
started/

• Documentation: The official Quarto documentation is available at https://quarto.
org/docs/guide/

• R4DS Chapter: For an excellent introduction to using Quarto with R, see the
Quarto chapter in R for Data Science2 (Wickham, Çetinkaya-Rundel, and Grolemund
2023)

11.2 Quarto Basics

A Quarto document is a plain text file with the extension .qmd. It contains three important
types of content:

1. An (optional) YAML header surrounded by ---s
2. Chunks of code surrounded by ```
3. Text mixed with simple text formatting like # heading and _italics_

11.2.1 Creating a New Quarto Document

In RStudio, create a new Quarto document using File > New File > Quarto Docu-
ment… in the menu bar. RStudio will launch a wizard that you can use to pre-populate
your file with useful content that reminds you how the key features of Quarto work.

11.2.2 Visual vs. Source Editor

RStudio provides two ways to edit Quarto documents:

Visual Editor: The Visual editor provides a WYSIWYM3 interface for authoring Quarto
documents. If you’re new to computational documents but have experience using tools like
Google Docs or MS Word, the visual editor is the easiest way to get started. In the visual

2https://r4ds.hadley.nz/quarto.html
3https://en.wikipedia.org/wiki/WYSIWYM

88

https://quarto.org/docs/get-started/
https://quarto.org/docs/get-started/
https://quarto.org/docs/guide/
https://quarto.org/docs/guide/
https://r4ds.hadley.nz/quarto.html
https://en.wikipedia.org/wiki/WYSIWYM

11 Quarto

editor you can use the buttons on the menu bar to insert images, tables, cross-references,
etc., or you can use the catch-all � + / or Ctrl + / shortcut to insert just about anything.

Source Editor: The source editor allows you to edit the raw markdown and code. While
the visual editor will feel familiar to those with experience in word processors, the source
editor will feel familiar to those with experience writing R scripts or R Markdown documents.
The source editor can also be useful for debugging any Quarto syntax errors since it’s often
easier to catch these in plain text.

You can switch between the visual and source editors at any time using the toggle in the
top-left of the editor pane.

11.2.3 Rendering Documents

To produce a complete report containing all text, code, and results:

• Click “Render” in RStudio, or
• Press Cmd/Ctrl + Shift + K, or
• Use quarto::quarto_render("document.qmd") in R, or
• Use quarto render document.qmd in the terminal

When you render the document, Quarto sends the .qmd file to knitr, which executes all of
the code chunks and creates a new markdown (.md) document which includes the code and
its output. The markdown file generated by knitr is then processed by pandoc, which is
responsible for creating the finished file in your chosen format (HTML, PDF, Word, etc.).

11.2.4 Code Chunks

To run code inside a Quarto document, you need to insert a chunk. There are three ways
to do so:

1. The keyboard shortcut Cmd + Option + I / Ctrl + Alt + I
2. The “Insert” button icon in the editor toolbar
3. By manually typing the chunk delimiters ```{r} and ```

Chunks can be given an optional label and various chunk options:

```{r}
#| label: simple-addition
#| echo: false
1 + 1
```

Common chunk options include:

• #| label: - give the chunk a name
• #| echo: false - hide the code but show the output
• #| code-fold: true - allow readers to toggle code visibility (useful when output is

more important to the narrative than the code)
• #| eval: false - show the code but don’t run it
• #| include: false - run the code but hide both code and output
• #| warning: false - hide warnings

89

11 Quarto

• #| message: false - hide messages

Use code-fold: true for chunks where the output is important to the narrative and not
the code used to produce it. This allows interested readers to expand and view the code
while keeping the document focused on results.

11.2.5 Format-Specific Settings

When rendering to multiple output formats (HTML, PDF, DOCX, EPUB), you may want
different chunk options or behavior for different formats. Use knitr::pandoc_to() with
if () statements to detect the output format and set format-specific settings.

Example: Different figure sizes for different formats

```{r}
#| label: example-plot
#| fig-width: !expr if (knitr::pandoc_to("html")) 8 else 6
#| fig-height: !expr if (knitr::pandoc_to("html")) 6 else 4

plot(1:10)
```

Example: Conditional code execution based on format

```{r}
if (knitr::pandoc_to("docx")) {
# DOCX-specific code
knitr::kable(data, format = "simple")

} else if (knitr::pandoc_to("html")) {
# HTML-specific code
knitr::kable(data, format = "html")

} else {
# PDF or other formats
knitr::kable(data, format = "latex")

}
```

Common format detection patterns:

• knitr::pandoc_to("html") - returns TRUE for HTML output
• knitr::pandoc_to("latex") - returns TRUE for PDF output
• knitr::pandoc_to("docx") - returns TRUE for Word output
• knitr::pandoc_to("epub") - returns TRUE for EPUB output

This technique is particularly useful when you need to:

• Adjust figure dimensions for different page sizes
• Use different table formatting for different outputs
• Include or exclude content based on output format
• Set format-specific styling or options

90

11 Quarto

11.2.6 Text Formatting

Quarto uses Pandoc’s markdown for text formatting:

• *italic* or _italic_ produces italic text
• **bold** or __bold__ produces bold text
• `code` produces code formatting
• # Heading 1, ## Heading 2, ### Heading 3 for headings
• Bullet lists start with - or *
• Numbered lists start with 1., 2., etc.
• [link text](url) creates hyperlinks
• ![alt text](image.png) inserts images

Important: Always include a blank line before bullet lists and numbered lists in markdown
and Quarto documents.

For more details on using Quarto for writing and analysis, see the Quarto chapter in R for
Data Science4 (Wickham, Çetinkaya-Rundel, and Grolemund 2023).

11.3 Building Quarto Books

Quarto books let you author entire books (or course notes, manuals, dissertations, etc.) in
markdown. Quarto books are ideal for documentation, tutorials, lab manuals, and other
long-form content.

11.3.1 Creating a Quarto Book

Starting from a template (recommended):

Using a template is the fastest way to get started with a Quarto book, as it provides
pre-configured settings, example content, and GitHub Actions workflows for automated
deployment:

1. UCD-SeRG Quarto Book Template - Our recommended template with pre-
configured settings for lab publications:

• Repository: https://github.com/UCD-SERG/qbt
• Click “Use this template” → “Create a new repository” on GitHub
• Clone your new repository and start editing
• Includes GitHub Actions for automatic deployment to GitHub Pages

2. Coatless Tutorials Quarto Book Template - Another template with helpful
examples:

• Repository: https://github.com/coatless-tutorials/quarto-book-template
• Includes examples of common Quarto book features

3. DataLab Quarto Template - Template from the UC Davis DataLab and Davis R
Users Group:

• Repository: https://github.com/d-rug/datalab_template_quarto
• Provides a starting point for DataLab workshop materials and tutorials

4https://r4ds.hadley.nz/quarto.html

91

https://github.com/UCD-SERG/qbt
https://github.com/coatless-tutorials/quarto-book-template
https://github.com/d-rug/datalab_template_quarto
https://r4ds.hadley.nz/quarto.html

11 Quarto

While these templates jumpstart your project with up-to-date configuration and work-
flow files, you should still come up to speed on what all the config files do (particularly
_quarto.yml and any GitHub Actions workflows) so you can modify and debug them as
needed. The templates serve as central locations for the most current versions of these files
and best practices.

Starting from scratch:

If you prefer to start from scratch, you can create a new Quarto book project using the
Quarto CLI:

Create a new Quarto book project
quarto create project book mybook
cd mybook

This will create a basic book structure with:

• _quarto.yml - configuration file for your book
• index.qmd - the home page / preface
• Sample chapter files
• references.qmd - bibliography/references page

11.3.2 Building and Previewing

Once you have a Quarto book project, you can build and preview it:

Render the entire book
quarto render

Preview with live reload (recommended during development)
quarto preview

The quarto preview command starts a local web server and automatically refreshes the
preview whenever you save changes to your files.

11.3.3 Book Structure

A typical Quarto book is organized as follows:

_quarto.yml: The main configuration file that defines:

• Book metadata (title, author, date)
• Chapter order
• Output formats (HTML, PDF, ePub, etc.)
• Styling and theme
• Navigation options

Chapter files: Individual .qmd files for each chapter. These are listed in the chapters
section of _quarto.yml.

Parts: You can organize chapters into parts for better structure:

92

11 Quarto

book:
chapters:

- index.qmd
- part: "Getting Started"

chapters:
- intro.qmd
- basics.qmd

- part: "Advanced Topics"
chapters:

- advanced.qmd

11.3.4 Book Features

Quarto books support many advanced features:

Cross-references: Reference figures, tables, equations, and sections throughout your
book:

See @fig-plot for details.
As shown in @tbl-results.
Refer to @sec-introduction.

Citations: Include a bibliography and cite sources:

According to @smith2020, the method works well.

Search: Automatic full-text search in HTML output.

Downloads: Offer PDF, ePub, and Word versions alongside HTML.

Navigation: Automatic table of contents, previous/next chapter buttons, and bread-
crumbs.

Customization: Custom themes, CSS, and templates for professional appearance.

11.3.5 Example: This Lab Manual

This lab manual itself is a Quarto book! You can view its source code at https://github.com/
UCD-SERG/lab-manual to see how we’ve structured chapters, used includes for modular
content, and configured various output formats.

11.3.6 Resources

• Quarto Books Guide5 - comprehensive documentation for Quarto books
• Quarto Publishing Guide6 - how to publish your book online
• R4DS Quarto chapter7 (Wickham, Çetinkaya-Rundel, and Grolemund 2023) - excellent

introduction to Quarto
5https://quarto.org/docs/books/
6https://quarto.org/docs/publishing/
7https://r4ds.hadley.nz/quarto.html

93

https://github.com/UCD-SERG/lab-manual
https://github.com/UCD-SERG/lab-manual
https://quarto.org/docs/books/
https://quarto.org/docs/publishing/
https://r4ds.hadley.nz/quarto.html

11 Quarto

11.4 Quarto Profiles

Quarto profiles allow you to customize rendering behavior for different purposes. A profile
is a named set of configuration options that can be activated when rendering. This is
particularly useful when you want to render the same source files in different formats or for
different audiences.

11.4.1 What are Profiles?

Profiles let you maintain multiple _quarto.yml configuration files in the same project. For
example, you might have:

• _quarto.yml - default book configuration
• _quarto-revealjs.yml - configuration for rendering chapters as slide decks
• _quarto-print.yml - configuration optimized for PDF printing

11.4.2 Example: Rendering Chapters as Slides

A excellent example of using Quarto profiles comes from the Regression Models for Epi-
demiology8 course materials by D. Morrison.

The project includes a _quarto-revealjs.yml profile that allows each chapter to be
compiled as a RevealJS slide deck, in addition to being part of the book.

To render a single chapter as slides:

quarto render chapter-name.qmd --profile=revealjs

To render all chapters listed in the profile as slides:

quarto render --profile=revealjs

11.4.3 Creating a Profile

To create a profile:

1. Create a new YAML file named _quarto-{profile-name}.yml
2. Include only the configuration options that differ from your default _quarto.yml
3. Activate the profile when rendering using --profile={profile-name}

Example profile structure:

_quarto-slides.yml:

8https://d-morrison.github.io/rme/

94

https://d-morrison.github.io/rme/

11 Quarto

project:
type: default
output-dir: slides

format:
revealjs:

theme: serif
slide-number: true
preview-links: auto

11.4.4 Common Use Cases

Multiple output formats: Maintain separate configurations for web, print, and presenta-
tion versions of your content.

Different audiences: Create versions with or without solutions, technical details, or
instructor notes.

Development vs. production: Use a development profile with faster rendering options
during writing, and a production profile with full features for final output.

Course materials: Render the same content as both a reference book and lecture slides,
as demonstrated in the RME course9.

11.4.5 Resources

• Quarto Profiles Documentation10

• RME Example11 - see the source at https://github.com/d-morrison/rme for a working
example

11.5 Advanced Features

11.5.1 Cross-References

Quarto provides a powerful cross-reference system for figures, tables, equations, and sections.
Cross-references automatically number your content and create clickable links in HTML
and PDF output.

Required label prefixes:

• Figures: #fig- (e.g., #fig-workflow-diagram)
• Tables: #tbl- (e.g., #tbl-summary-stats)
• Equations: #eq- (e.g., #eq-regression-model)
• Sections: #sec- (e.g., #sec-introduction)
• Theorems: #thm-, Lemmas: #lem-, Corollaries: #cor-
• Propositions: #prp-, Examples: #exm-, Exercises: #exr-

9https://d-morrison.github.io/rme/
10https://quarto.org/docs/projects/profiles.html
11https://d-morrison.github.io/rme/

95

https://github.com/d-morrison/rme
https://d-morrison.github.io/rme/
https://quarto.org/docs/projects/profiles.html
https://d-morrison.github.io/rme/

11 Quarto

For figures (static images):

![Caption text](path/to/image.png){#fig-label}

For code-generated figures:

```{r}
#| label: fig-plot-name
#| fig-cap: "Caption text describing the plot"

# R code to generate plot
ggplot(data, aes(x, y)) + geom_point()
```

For tables (markdown tables):

Column 1	Column 2
Data	Data

: Caption text {#tbl-label}

For code-generated tables:

```{r}
#| label: tbl-table-name
#| tbl-cap: "Caption text"

# R code to generate table
knitr::kable(data)
```

Referencing in text:

• Figures: @fig-label produces “Figure X”
• Tables: @tbl-label produces “Table X”
• Equations: @eq-label produces “Equation X”
• Sections: @sec-label produces “Section X”

Benefits:

• Automatic numbering of figures, tables, and equations
• Automatic updates when content is reordered
• Clickable cross-references in HTML and PDF output
• Consistent formatting across all output formats
• Better accessibility for screen readers

For complete details, see the Quarto Cross-References documentation12.

12https://quarto.org/docs/authoring/cross-references.html

96

https://quarto.org/docs/authoring/cross-references.html

11 Quarto

11.5.2 Using Includes for Modular Content

Quarto’s include feature allows you to decompose large documents into smaller, more
manageable files. This is particularly useful for books and long documents.

Basic syntax:

{{< include path/to/file.qmd >}}

Benefits:

1. Better Git History: When sections are reordered, only the main chapter file changes
(moving include statements), making it immediately clear that content was reorganized
rather than edited.

2. Easier Code Review: Reviewers can see exactly what changed—either the organi-
zation (main file) or the content (include file).

3. Modular Maintenance: Each section lives in its own file, making it easier to find
and edit specific content, reuse sections across chapters, and work on different sections
simultaneously without merge conflicts.

4. Clear Structure: The main chapter file becomes a table of contents showing the
organization at a glance.

Recommended pattern:

Main chapter file (e.g., 05-coding-practices.qmd):

Coding Practices

Section Heading

{{< include coding-practices/section-name.qmd >}}

Another Section

{{< include coding-practices/another-section.qmd >}}

Include files (e.g., coding-practices/section-name.qmd):

• Stored in a subdirectory matching the chapter name
• Contains only the content for that section (no heading)
• The heading stays in the main chapter file
• Named descriptively using kebab-case

Note: The heading must be in the main file, followed by a blank line, then the include
statement. This keeps the document structure clear in the main file.

For more details, see the Quarto Includes documentation13.

13https://quarto.org/docs/authoring/includes.html

97

https://quarto.org/docs/authoring/includes.html

11 Quarto

11.6 Mermaid Diagrams

Mermaid diagrams are a powerful tool for creating flowcharts, sequence diagrams, state
diagrams, and other visualizations directly in your Quarto documents using text-based
syntax. While mermaid diagrams work well in HTML output, they have significant
limitations when rendering to DOCX (Word) and PDF formats as of early 2026.

11.6.1 Creating Mermaid Diagrams

Mermaid diagrams are created using fenced code blocks with the mermaid language tag:

```{mermaid}
flowchart LR
A[Start] --> B{Decision}
B -->|Yes| C[Result 1]
B -->|No| D[Result 2]

```

This creates a simple flowchart that renders beautifully in HTML output.

11.6.2 Known Issues with DOCX and PDF Output

As of early 2026, rendering mermaid diagrams to DOCX or PDF formats in
Quarto is unreliable and problematic. These issues are well-documented in the Quarto
community and stem from the underlying tooling used to convert diagrams to images.

11.6.2.1 Rendering Failures and Hangs

When rendering documents with mermaid diagrams to DOCX format, you may experience:

• Indefinite hangs: Quarto may hang indefinitely during rendering, leaving orphaned
Chrome/Edge browser processes running (Gewerd-Strauss 2023)

• Complete rendering failures: The rendering process may fail entirely with errors
• Missing diagrams: The document may render successfully but with missing diagrams

(“Quarto Cannot Render Mermaid or Dot Images to Docx and Pdf Formats” 2023)

These issues occur because Quarto relies on headless browser engines (Chrome or Edge
via Puppeteer) to convert mermaid diagrams to images for inclusion in DOCX and PDF
outputs. The browser integration can fail or hang, particularly when running in automated
environments or when multiple diagrams are present.

11.6.2.2 Image Quality Issues

Even when rendering succeeds, mermaid diagrams in DOCX and PDF output often suffer
from:

• Small or blurry images: Diagrams appear rasterized at low resolution
• Incorrect sizing: Diagrams may not respect sizing options specified in the document

98

11 Quarto

11.6.3 Recommended Workarounds

Given these limitations, we recommend the following approaches when you need DOCX or
PDF output:

11.6.3.1 1. Manual Export and Embedding (Most Reliable)

The most robust workflow is to:

1. First render your mermaid diagrams to HTML
2. Export them as PNG or SVG images manually using:

• Browser developer tools (save rendered diagram)
• Online mermaid editors (e.g., https://mermaid.live/)
• Mermaid CLI tools

3. Include the exported images in your Quarto document using standard markdown
syntax

Example:

![Workflow diagram description](assets/images/workflow-diagram.png){#fig-workflow}

This approach guarantees compatibility with all output formats and gives you full control
over image quality.

11.6.3.2 2. Conditional Content for Different Formats

Use Quarto’s conditional content features to show different content based on output
format:

::: {.content-visible when-format="html"}
```{mermaid}
flowchart LR
A[Start] --> B[End]

```
:::

::: {.content-visible unless-format="html"}
![Workflow diagram](assets/images/workflow-diagram.png)
:::

This shows the live mermaid diagram in HTML output and a static image in DOCX/PDF
outputs.

11.6.3.3 3. Ensure Chromium is Installed (Partial Solution)

If you want to attempt rendering mermaid diagrams to DOCX, ensure you have Chrome or
Edge installed. You can install Chromium via Quarto:

99

https://mermaid.live/

11 Quarto

quarto tools install chromium

However, this does not guarantee successful rendering and may still result in hangs or
failures.

11.6.3.4 4. Prefer HTML Output When Possible

When creating documentation that includes mermaid diagrams, prefer HTML as your
primary output format. HTML rendering of mermaid diagrams is fast, reliable, and
produces high-quality interactive diagrams.

If DOCX output is required for collaboration or submission, use one of the workarounds
above.

11.6.4 Real-World Example

In UCD-SERG/rpt PR #7014, our team removed mermaid diagrams from package vignettes
specifically because they were incompatible with DOCX output. This demonstrates the
practical impact of these limitations in production workflows.

11.6.5 Future Outlook

The Quarto development team is aware of these issues and working to improve diagram
rendering support. Monitor the following resources for updates:

• Quarto CLI Issue #380915 - Tracking mermaid/dot rendering to DOCX/PDF
• Quarto Discussion #608516 - Mermaid rendering hangs with DOCX
• Quarto Diagrams Documentation17 - Official documentation on diagram rendering

Check for improvements in newer Quarto versions, but as of early 2026, manual export and
embedding remains the most reliable approach for DOCX and PDF outputs.

11.6.6 Summary

Key Takeaways:

• Mermaid diagrams work well in HTML output but are problematic for DOCX and
PDF

• Rendering failures, hangs, and quality issues are common
• For reliable DOCX/PDF output, export diagrams manually as images
• Use conditional content to show different formats based on output type
• Prefer HTML output when mermaid diagrams are important to your document

14https://github.com/UCD-SERG/rpt/pull/70
15https://github.com/quarto-dev/quarto-cli/issues/3809
16https://github.com/orgs/quarto-dev/discussions/6085
17https://quarto.org/docs/authoring/diagrams.html

100

https://github.com/UCD-SERG/rpt/pull/70
https://github.com/quarto-dev/quarto-cli/issues/3809
https://github.com/orgs/quarto-dev/discussions/6085
https://quarto.org/docs/authoring/diagrams.html

11 Quarto

11.7 Additional Resources

11.7.1 Official Documentation

• Quarto Official Guide18 - comprehensive official documentation
• Quarto Books Guide19 - documentation specific to creating books
• Quarto Publishing Guide20 - how to publish your Quarto content online
• Quarto Getting Started21 - installation and basic usage

11.7.2 Learning Resources

• R for Data Science - Quarto Chapter22 (Wickham, Çetinkaya-Rundel, and Grolemund
2023) - excellent introduction to using Quarto with R

• Regression Models for Epidemiology23 - example of a Quarto book with profiles for
rendering chapters as slides

• UCD-SeRG Lab Manual Source24 - this manual’s source code provides examples of:

– Book structure and organization
– Using includes for modular content

– Configuring multiple output formats (HTML, PDF, ePub, Word)
– Cross-references for figures, tables, and sections

11.7.3 Templates

• UCD-SeRG Quarto Book Template25 - our recommended template
• Coatless Tutorials Quarto Book Template26 - another frequently-used template with

helpful examples
• DataLab Quarto Template27 - template from the UC Davis DataLab and Davis R

Users Group

11.7.4 Related Lab Manual Chapters

For additional context about using Quarto in our lab:

• Chapter 6 - R coding practices that apply to code in Quarto documents
• Chapter 8 - Code style guidelines including formatting for Quarto documents
• Chapter 12 - Version control for Quarto projects

18https://quarto.org/docs/guide/
19https://quarto.org/docs/books/
20https://quarto.org/docs/publishing/
21https://quarto.org/docs/get-started/
22https://r4ds.hadley.nz/quarto.html
23https://d-morrison.github.io/rme/
24https://github.com/UCD-SERG/lab-manual
25https://github.com/UCD-SERG/qbt
26https://github.com/coatless-tutorials/quarto-book-template
27https://github.com/d-rug/datalab_template_quarto

101

https://quarto.org/docs/guide/
https://quarto.org/docs/books/
https://quarto.org/docs/publishing/
https://quarto.org/docs/get-started/
https://r4ds.hadley.nz/quarto.html
https://d-morrison.github.io/rme/
https://github.com/UCD-SERG/lab-manual
https://github.com/UCD-SERG/qbt
https://github.com/coatless-tutorials/quarto-book-template
https://github.com/d-rug/datalab_template_quarto

12 Github

Adapted by UCD-SeRG team from original by Stephanie Djajadi and Nolan Pokpongkiat1

12.1 Basics

• A detailed tutorial of Git can be found here on the CS61B website2.
• If you are already familiar with Git, you can reference the summary at the end of

Section B3.
• If you have made a mistake in Git, you can refer to On undoing, fixing, or removing

commits in git (Robertson, n.d.) to undo, fix, or remove commits in git.
• For hands-on Git practice, see the UC Davis DataLab Git Sandbox4 - a collaborative

repository for learning Git workflows.

12.2 GitHub Education and Copilot Access

12.2.1 GitHub Education Benefits

Students, faculty, and researchers at UC Davis can access GitHub Education benefits, which
include free access to GitHub Pro features and various developer tools.

To sign up for GitHub Education:

1. Visit the GitHub Education website5

2. Click “Get benefits” or “Join GitHub Education”
3. Sign in with your GitHub account (or create one if you don’t have one)
4. Complete the application form using your UC Davis email address (ending in

ucdavis.edu)
5. Provide proof of your academic affiliation (e.g., upload a photo of your student ID or

university letter)
6. Wait for approval (typically takes a few days)

Once approved, you’ll have access to the GitHub Student Developer Pack6 (for students) or
GitHub Teacher Toolbox7 (for faculty), which includes numerous free tools and services for
learning and development.

1https://jadebc.github.io/lab-manual/github.html
2https://sp19.datastructur.es/materials/guides/using-git#b-local-repositories-narrative-introduction
3https://sp19.datastructur.es/materials/guides/using-git#b-local-repositories-narrative-introduction
4https://github.com/ucdavisdatalab/sandbox_git
5https://education.github.com/
6https://education.github.com/pack
7https://education.github.com/teachers

102

https://jadebc.github.io/lab-manual/github.html
https://sp19.datastructur.es/materials/guides/using-git#b-local-repositories-narrative-introduction
https://sp19.datastructur.es/materials/guides/using-git#b-local-repositories-narrative-introduction
https://github.com/ucdavisdatalab/sandbox_git
https://education.github.com/
https://education.github.com/pack
https://education.github.com/teachers

12 Github

12.2.2 GitHub Copilot Access for UC Davis Members

GitHub Copilot is an AI-powered coding assistant that can significantly accelerate your
work. As a member of the UC Davis GitHub organization, you may be eligible for a free
Copilot seat.

To request a Copilot seat:

If you are not yet a member of the UC Davis GitHub organization:

1. Ensure you have a GitHub account and have signed up for GitHub Education (see
above)

2. Go to the UC Davis IT ServiceHub GitHub page8

3. Click the blue “Get GitHub!” button near the top right
4. When you receive the invitation email, make sure to check the “Ask for a GitHub

Copilot seat (optional)” checkbox before joining (Figure 12.1)

Figure 12.1: UC Davis GitHub invitation with Copilot seat option

5. Click “Join UC Davis” to accept the invitation
6. Follow the setup instructions to install and configure Copilot in your development

environment

If you are already a member of the UC Davis GitHub organization:

1. Go to your GitHub Copilot settings9

2. Scroll to the “Get Copilot from an organization” section at the bottom
3. Find the “ucdavis” entry and click the request button

8https://servicehub.ucdavis.edu/servicehub?id=it_catalog_content&sys_id=
951add951b5798103f4286ae6e4bcb12

9https://github.com/settings/copilot/features

103

https://servicehub.ucdavis.edu/servicehub?id=it_catalog_content&sys_id=951add951b5798103f4286ae6e4bcb12
https://servicehub.ucdavis.edu/servicehub?id=it_catalog_content&sys_id=951add951b5798103f4286ae6e4bcb12
https://github.com/settings/copilot/features

12 Github

Figure 12.2: GitHub Copilot settings page showing organization options

4. Wait for approval from the UC Davis GitHub organization administrators
5. Once approved, follow the setup instructions to install and configure Copilot in your

development environment

For guidance on using GitHub Copilot effectively, see Section 18.5.8 in the Working with
AI chapter.

12.3 Github Desktop

While knowing how to use Git on the command line will always be useful since the full power
of Git and its customizations and flexibility is designed for use with the command line,
Github also provides GitHub Desktop (“GitHub Desktop,” n.d.) as a graphical interface to
do basic git commands; you can do all of the basic functions of Git using this desktop app.
Feel free to use this as an alternative to Git on the command line if you prefer.

12.4 Git Branching

Branches allow you to keep track of multiple versions of your work simultaneously, and
you can easily switch between versions and merge branches together once you’ve finished
working on a section and want it to join the rest of your code. Here are some cases when it
may be a good idea to branch:

• You may want to make a dramatic change to your existing code (called refactoring)
but it will break other parts of your project. But you want to be able to simultaneously
work on other parts or you are collaborating with others, and you don’t want to break
the code for them.

• You want to start working on a new part of the project, but you aren’t sure yet if
your changes will work and make it to the final product.

• You are working with others and don’t want to mix up your current work with theirs,
even if you want to bring your work together later in the future.

A detailed tutorial on Git Branching can be found here10. You can also find instructions on
how to handle merge conflicts when joining branches together.

12.5 Example Workflow

A standard workflow when starting on a new project and contributing code looks like this:

10https://sp19.datastructur.es/materials/guides/using-git#e-git-branching-advanced-git-optional

104

https://sp19.datastructur.es/materials/guides/using-git#e-git-branching-advanced-git-optional

12 Github

Table 12.1: Standard Git workflow for new projects

Command Description

SETUP: FIRST TIME ONLY:
git clone <url>
<directory_name>

Clone the repo. This copies of all the project files in its
current state on Github to your local computer.

1. git pull origin master update the state of your files to match the most current
version on GitHub

2. git checkout -b
<new_branch_name>

create new branch that you’ll be working on and go to it

3. Make some file changes work on your feature/implementation
4. git add -p add changes to stage for commit, going through changes

line by line
5. git commit -m <commit
message>

commit files with a message

6. git push -u origin
<branch_name>

push branch to remote and set to track (-u only needed
if this is first push)

7. Repeat step 4-5. work and commit often
8. git push push work to remote branch for others to view
9. Follow the link given from
the git push command to
submit a pull request (PR) on
GitHub online11

PR merges in work from your branch into master

(10.) Your changes and PR get
approved, your reviewer deletes
your remote branch upon
merging
11. git fetch --all
--prune

clean up your local git by untracking deleted remote
branches

Other helpful commands are listed below.

12.6 Commonly Used Git Commands

Table 12.2: Commonly used Git commands

Command Description

git clone <url>
<directory_name>

clone a repository, only needs to be done the first time

git pull origin master pull from master before making any changes
git branch check what branch you are on
git branch -a check what branch you are on + all remote branches
git checkout -b
<new_branch_name>

create new branch and go to it (only necessary when you
create a new branch)

git checkout <branch name> switch to branch

11https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-
request#creating-the-pull-request

105

https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request#creating-the-pull-request
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request#creating-the-pull-request

12 Github

Command Description

git add <file name> add file to stage for commit
git add -p adds changes to commit, showing you changes one by

one
git commit -m <commit
message>

commit file with a message

git push -u origin
<branch_name>

push branch to remote and set to track (-u only works if
this is first push)

git branch
--set-upstream-to origin
<branch_name>

set upstream to origin/<branch_name> (use if you
forgot -u on first push)

git push origin
<branch_name>

push work to branch

git checkout <branch_name>
git merge master

switch to branch and merge changes from master into
<branch_name> (two commands)

git merge <branch_name>
master

switch to branch and merge changes from master into
<branch_name> (one command)

git checkout --track
origin/<branch_name>

pulls a remote branch and creates a local branch to
track it (use when trying to pull someone else’s branch
onto your local computer)

git push --delete
<remote_name>
<branch_name>

delete remote branch

git branch -d
<branch_name>

deletes local branch, -D to force

git fetch --all --prune untrack deleted remote branches

12.7 How often should I commit?

It is good practice to commit every 15 minutes, or every time you make a significant change.
It is better to commit more rather than less.

12.8 Repeated Amend Workflow

When working on a complex task, you may want to make frequent incremental commits
to protect your progress, but avoid cluttering your Git history with many tiny “work in
progress” commits. The Repeated Amend pattern lets you build up a polished commit
gradually.

12.8.1 Basic Workflow

Start with a clean working tree in a functional state. Then:

1. Make a small change and verify your project still works
2. Stage and commit with a temporary message like “WIP” (work in progress)
3. Do not push yet
4. Make another small change and verify it works

106

12 Github

5. Stage and amend the previous commit: git commit --amend --no-edit
6. Repeat steps 4-5 as needed
7. When finished, amend one final time with a proper commit message
8. Push your completed work

In RStudio, you can use the “Amend previous commit” checkbox when committing.

12.8.2 Key Points

• Each amend replaces the previous commit rather than creating a new one
• This keeps your history clean while letting you work incrementally
• Only use this pattern before pushing - never amend commits that others may have

pulled
• If you need to undo changes, use git reset --hard to return to your last commit

state
• Think of commits as climbing protection: use them when in uncertain territory

For more details and troubleshooting scenarios, see the Repeated Amend chapter12 in Happy
Git with R.

12.9 What should be pushed to Github?

Never push .Rout files! If someone else runs an R script and creates an .Rout file at the
same time and both of you try to push to github, it is incredibly difficult to reconcile these
two logs. If you run logs, keep them on your own system or (preferably) set up a shared
directory where all logs are name and date timestamped.

There is a standardized .gitignore for R which you can download13 and add to your
project. This ensures you’re not committing log files or things that would otherwise best be
left ignored to GitHub. This is a great discussion of project-oriented workflows14, extolling
the virtues of a self-contained, portable projects, for your reference.

12.10 Customizing How Files Appear on GitHub

GitHub uses a tool called Linguist15 to detect languages in your repository and generate
language statistics. You can customize how certain files are treated by GitHub using
a .gitattributes file in the root of your repository. This is particularly useful for
marking generated files, documentation, or vendored code that shouldn’t count toward your
repository’s language statistics.

12https://happygitwithr.com/repeated-amend.html
13https://github.com/github/gitignore/blob/master/R.gitignore
14https://tidyverse.org/blog/2017/12/workflow-vs-script/
15https://github.com/github-linguist/linguist/

107

https://happygitwithr.com/repeated-amend.html
https://github.com/github/gitignore/blob/master/R.gitignore
https://tidyverse.org/blog/2017/12/workflow-vs-script/
https://github.com/github-linguist/linguist/

12 Github

12.10.1 The linguist-generated Attribute

One of the most useful attributes is linguist-generated, which marks files as generated
code. Files marked this way are:

• Excluded from language statistics - they won’t affect your repository’s language
breakdown

• Hidden by default in diffs - making pull request reviews cleaner and more focused
on actual code changes

Common use cases for linguist-generated include:

• Compiled or minified files (e.g., *.min.js, *.min.css)
• Auto-generated documentation files
• Files generated by build tools or code generators
• Lock files that are updated automatically

For more details, see the Generated code documentation16.

12.10.2 Using .gitattributes

Create a .gitattributes file in the root of your repository and add patterns for files you
want to mark as generated:

Mark minified JavaScript as generated
*.min.js linguist-generated

Mark search index as generated
search/index.json linguist-generated

Mark compiled CSS as generated
dist/styles.css linguist-generated

To unmark a file that would normally be considered generated:

Don't treat bootstrap as generated
bootstrap.min.css -linguist-generated

The .gitattributes file uses the same pattern matching rules as .gitignore. For more
details, see the pattern format documentation17 and the Using gitattributes guide18.

16https://github.com/github-linguist/linguist/blob/main/docs/overrides.md#generated-code
17https://www.git-scm.com/docs/gitignore#_pattern_format
18https://github.com/github-linguist/linguist/blob/main/docs/overrides.md#using-gitattributes

108

https://github.com/github-linguist/linguist/blob/main/docs/overrides.md#generated-code
https://www.git-scm.com/docs/gitignore#_pattern_format
https://github.com/github-linguist/linguist/blob/main/docs/overrides.md#using-gitattributes

12 Github

12.10.3 Other Useful Linguist Attributes

Beyond linguist-generated, you can use several other attributes:

• linguist-vendored - Marks vendored code (libraries you didn’t write) to exclude
from stats (documentation19)

• linguist-documentation - Marks documentation files to exclude from stats (docu-
mentation20)

• linguist-detectable - Forces a file type to be included in language stats (useful for
data or prose files) (documentation21)

• linguist-language=<name> - Overrides the detected language for syntax highlighting
(documentation22)

Example .gitattributes file:

Exclude vendored dependencies
vendor/* linguist-vendored

Exclude generated files
*.generated.ts linguist-generated
dist/* linguist-generated

Mark documentation
docs/* linguist-documentation

Force R Markdown files to be detected
*.Rmd linguist-detectable

For complete documentation, see Customizing how changed files appear on GitHub23 and
the Linguist overrides documentation24.

19https://github.com/github-linguist/linguist/blob/main/docs/overrides.md#vendored-code
20https://github.com/github-linguist/linguist/blob/main/docs/overrides.md#documentation
21https://github.com/github-linguist/linguist/blob/main/docs/overrides.md#detectable
22https://github.com/github-linguist/linguist/blob/main/docs/overrides.md#using-gitattributes
23https://docs.github.com/en/repositories/working-with-files/managing-files/customizing-how-changed-

files-appear-on-github
24https://github.com/github-linguist/linguist/blob/main/docs/overrides.md

109

https://github.com/github-linguist/linguist/blob/main/docs/overrides.md#vendored-code
https://github.com/github-linguist/linguist/blob/main/docs/overrides.md#documentation
https://github.com/github-linguist/linguist/blob/main/docs/overrides.md#detectable
https://github.com/github-linguist/linguist/blob/main/docs/overrides.md#using-gitattributes
https://docs.github.com/en/repositories/working-with-files/managing-files/customizing-how-changed-files-appear-on-github
https://docs.github.com/en/repositories/working-with-files/managing-files/customizing-how-changed-files-appear-on-github
https://github.com/github-linguist/linguist/blob/main/docs/overrides.md

13 Unix

Adapted by UCD-SeRG team from original by Stephanie Djajadi, Kunal Mishra, Anna
Nguyen, and Jade Benjamin-Chung1

We typically use Unix commands in Terminal (for Mac users) or Git Bash (for Windows
users) to

1. Run a series of scripts in parallel or in a specific order to reproduce our work
2. To check on the progress of a batch of jobs
3. To use git and push to github

13.1 Basics

On the computer, there is a desktop with two folders, folder1 and folder2, and a file
called file1. Inside folder1, we have a file called file2. Mac users can run these
commands on their terminal; it is recommended that Windows users use Git Bash, not
Windows PowerShell.

Figure 13.1: Example desktop with folders and files

1https://jadebc.github.io/lab-manual/unix.html

110

https://jadebc.github.io/lab-manual/unix.html

13 Unix

13.2 Syntax for both Mac/Windows

When typing in directories or file names, quotes are necessary if the name includes spaces.

Table 13.1: Basic Unix commands for Mac and Windows

Command Description

cd desktop/folder1 Change directory to folder1
pwd Print working directory
ls List files in the directory
cp "file2" "newfile2" Copy file (remember to include file extensions

when typing in file names like .pdf or .R)
mv "newfile2" "file3" Rename newfile2 to file3
cd .. Go to parent of the working directory (in this

case, desktop)
mv "file1" folder2 Move file1 to folder2
mkdir folder3 Make a new folder in folder2
rm <filename> Remove files
rm -rf folder3 Remove directories (-r will attempt to remove

the directory recursively, -rf will force removal of
the directory)

clear Clear terminal screen of all previous commands

111

13 Unix

Figure 13.2: Terminal output after executing basic Unix commands

112

13 Unix

13.3 Running Bash Scripts

Table 13.2: Commands for running Bash scripts

Windows Mac / Linux Description

chmod +750
<filename.sh>

chmod +x <filename.sh> Change access permissions for a
file (only needs to be done once)

./<filename.sh> ./<filename.sh> Run file (./ to run any
executable file)

bash
bash_script_name.sh
&

bash bash_script_name.sh & Run shell script in the
background

13.4 Running Rscripts in Windows

Note: This code seems to work only with Windows Command Prompt, not
with Git Bash.

When R is installed, it comes with a utility called Rscript. This allows you to run R
commands from the command line. If Rscript is in your PATH, then typing Rscript into the
command line, and pressing enter, will not error. Otherwise, to use Rscript, you will either
need to add it to your PATH (as an environment variable), or append the full directory
of the location of Rscript on your machine. To find the full directory, search for where R
is installed your computer. For instance, it may be something like below (this will vary
depending on what version of R you have installed):

C:\Program Files\R\R-3.6.0\bin

For appending the PATH variable, please view this link2. I strongly recommend completing
this option.

If you add the PATH as an environment variable, then you can run this line of code to test:
Rscript -e "cat(‘this is a test’)", where the -e flag refers to the expression that
will be executed.

If you do not add the PATH as an environment variable, then you can run this line of code to
replicate the results from above: "C:\Program Files\R\R-3.6.0\bin" -e "cat(‘this
is a test’)"

To run an R script from the command line, we can say: Rscript -e "source(‘C:/path/to/script/some_code.R’)"

13.4.1 Common Mistakes

• Remember to include all of the quotation marks around file paths that have a spaces.
• If you attempt to run an R script but run into Error: '\U' used without hex

digits in character string starting "'C:\U", try replacing all \ with \\ or /.

2https://www.howtogeek.com/118594/how-to-edit-your-system-path-for-easy-command-line-access/

113

https://www.howtogeek.com/118594/how-to-edit-your-system-path-for-easy-command-line-access/

13 Unix

13.5 Checking tasks and killing jobs

Windows Mac / Linux Description

tasklist ps -v List all processes on the
command line

top -o [cpu/rsize] List all running processes,
sorted by CPU or memory
usage

taskkill /F /PID
pid_number

kill <PID_number> Kill a process by its process ID

taskkill /IM
"process name" /F

Kill a process by its name

start /b
program.exe

Runs jobs in the background
(exclude /b if you want the
program to run in a new
console)

nohup Prevents jobs from stopping
disown Keeps jobs running in the

background even if you close R
taskkill /? Help, lists out other commands

To kill a task in Windows, you can also go to Task Manager > More details > Select your
desired app > Click on End Task.

13.6 Running big jobs

For big data workflows, the concept of “backgrounding” a bash script allows you to start
a “job” (i.e. run the script) and leave it overnight to run. At the top level, a bash script
(0-run-project.sh) that simply calls the directory-level bash scripts (i.e. 0-prep-data.sh,
0-run-analysis.sh, 0-run-figures.sh, etc.) is a powerful tool to rerun every script in
your project. See the included example bash scripts for more details.

• Running Bash Scripts in Background: Running a long bash script is not trivial.
Normally you would run a bash script by opening a terminal and typing something
like ./run-project.sh. But what if you leave your computer, log out of your server,
or close the terminal? Normally, the bash script will exit and fail to complete. To run
it in background, type ./run-project.sh &; disown. You can see the job running
(and CPU utilization) with the command top or ps -v and check your memory with
free -h.

Alternatively, to keep code running in the background even when an SSH connection is
broken, you can use tmux. In terminal or gitbash follow the steps below. This site3 has
useful tips on using tmux.

3https://medium.com/@jeongwhanchoi/install-tmux-on-osx-and-basics-commands-for-beginners-
be22520fd95e

114

https://medium.com/@jeongwhanchoi/install-tmux-on-osx-and-basics-commands-for-beginners-be22520fd95e
https://medium.com/@jeongwhanchoi/install-tmux-on-osx-and-basics-commands-for-beginners-be22520fd95e

13 Unix

create a new tmux session called session_name
tmux new -ssession_name

run your job of interest
R CMD BATCH myjob.R &

check that it is running
ps -v

to exit the tmux session (Mac)
ctrl + b
d

to reopen the tmux session to kill the job or
start another job
tmux attach -tsession_name

• Deleting Previously Computed Results: One helpful lesson we’ve learned is that
your bash scripts should remove previous results (computed and saved by scripts run
at a previous time) so that you never mix results from one run with a previous run.
This can happen when an R script errors out before saving its result, and can be
difficult to catch because your previously saved result exists (leading you to believe
everything ran correctly).

• Ensuring Things Ran Correctly: You should check the .Rout files generated by
the R scripts run by your bash scripts for errors once things are run. A utility file
is include in this repository, called runFileSaveLogs, and is used by the example
bash scripts to… run files and save the generated logs. It is an awesome utility and
one I definitely recommend using. Before using runFileSaveLogs, it is necessary to
put the file in the home working directory. For help and documentation, you can
use the command ./runFileSaveLogs -h. See example code and example usage for
runFileSaveLogs below.

13.6.1 Example code for runfileSaveLogs

#!/usr/bin/env python3
Type "./runFileSaveLogs -h" for help

import os
import sys
import argparse
import getpass
import datetime
import shutil
import glob
import pathlib

Setting working directory to this script's current directory
os.chdir(os.path.dirname(os.path.abspath(__file__)))

115

13 Unix

Setting up argument parser
parser = argparse.ArgumentParser(description='Runs the argument R script(s) - in parallel if specified - and moves the subsequent generated .Rout log files to a timestamped directory.')

Function ensuring that the file is valid
def is_valid_file(parser, arg):

if not os.path.exists(arg):
parser.error("The file %s does not exist!" % arg)

else:
return arg

Function ensuring that the directory is valid
def is_valid_directory(parser, arg):

if not os.path.isdir(arg):
parser.error("The specified path (%s) is not a directory!" % arg)

else:
return arg

Additional arguments that can be added when running runFileSaveLogs
parser.add_argument('-p', '--parallel', action='store_true', help="Runs the argument R scripts in parallel if specified")
parser.add_argument("-i", "--identifier", help="Adds an identifier to the directory name where this is saved")
parser.add_argument('filenames', nargs='+', type=lambda x: is_valid_file(parser, x))

args = parser.parse_args()
args_dict = vars(args)

print(args_dict)

Run given R Scripts
for filename in args_dict["filenames"]:
system_call = "R CMD BATCH" + " " + filename
if args_dict["parallel"]:

system_call = "nohup" + " " + system_call + " &"

os.system(system_call)

Create the directory (and any parents) of the log files
currentUser = getpass.getuser()
currentTime = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
logDirPrefix = "/home/kaiserData/logs/" # Change to the directory where the logs should be saved
logDir = logDirPrefix + currentTime + "-" + currentUser

If specified, adds the identifier to the filename of the log
if args.identifier is not None:
logDir += "-" + args.identifier

logDir += "/"

pathlib.Path(logDir).mkdir(parents=True, exist_ok=True)

Find and move all logs to this new directory

116

13 Unix

currentLogPaths = glob.glob('./*.Rout')

for currentLogPath in currentLogPaths:
filename = currentLogPath.split("/")[-1]
shutil.move(currentLogPath, logDir + filename)

13.6.2 Example usage for runfileSaveLogs

This example bash script runs files and generates logs for five scripts in the kaiserflu/3-
figures folder. Note that the -i flag is used as an identifier to add figures to the filename
of each log.

#!/bin/bash

Copy utility run script into this folder for concision in call
cp ~/kaiserflu/runFileSaveLogs ~/kaiserflu/3-figures/

Run folder scripts and produce output
cd ~/kaiserflu/3-figures/
./runFileSaveLogs -i "figures" \
fig-mean-season-age.R \
fig-monthly-rate.R \
fig-point-estimates-combined.R \
fig-point-estimates.R \
fig-weekly-rate.R

Remove copied utility run script
rm runFileSaveLogs

117

14 Reproducible Environments

Adapted by UCD-SeRG team from original by Anna Nguyen1

14.1 Package Version Control with renv

14.1.1 Introduction

Replicable code should produce the same results, regardless of when or where it’s run.
However, our analyses often leverage open-source R packages that are developed by other
teams. These packages continue to be developed after research projects are completed,
which may include changes to analysis functions that could impact how code runs for both
other team members and external replicators.

For example, suppose we had used a function that took in one argument, such that our code
contained example_function(arg_a = "a"). A few months after we publish our code, the
package developers update the function to take in another mandatory argument arg_b. If
someone runs our code, but has the most recent version of the package, they’ll receive an
error message that the argument arg_b is missing and will not be able to full reproduce
our results.

To ensure that the right functions are used in replication efforts, it is important for us to
keep track of package versions used in each project.

renv can be to promote reproducible environments within R projects. renv creates individ-
ual package libraries for each project instead of having all projects, which may use different
versions of the same package, share the same package library. However, for projects that
use many packages, this process can be memory intensive and increase the time needed for
a new users to start running code.

In this lab manual chapter, we provide a quick tutorial for integrating renv into research
workflows. For more detailed instructions, please refer to the renv package vignette.

14.1.2 Implementing renv in projects

Ideally, renv should be initiated at the start of projects and updated continuously when
new packages are introduced in the codebase. However, this process can be initiated at any
point in a project

To add renv to your workflow, follow these steps:

1. Install the renv package by running install.packages("renv")
2. Create an RProject file and ensure that your working directory is set to the correct

folder

1https://jadebc.github.io/lab-manual/reproducible-environments.html

118

https://jadebc.github.io/lab-manual/reproducible-environments.html

14 Reproducible Environments

3. In the R console, run renv::init() to initialize renv in your R Project
4. This will create the following files: renv.lock, .Rprofile, renv/settings.json and

renv/activate.R. Commit and push these files to GitHub so that they’re accessible
to other users.

5. As you write code, update the project’s R library by running renv::snapshot() in
the R console

6. Add renv::restore() to the head of your config file, to make sure that all users that
run your code are on the same package versions.

14.1.3 Configuring renv settings

The renv/settings.json file created during initialization allows you to customize how
renv behaves in your project. One useful setting is snapshot.dev, which controls whether
development dependencies are included by default when calling renv::snapshot() or
renv::status().

14.1.3.1 Reducing startup messages

When working on projects, you may encounter startup messages indicating that renv is
out of sync with the lockfile. To reduce these messages in most projects, add the following
setting to renv/settings.json:

"snapshot.dev": true

This setting (available in renv version 1.1.6 and later) includes development dependencies
in snapshots by default, which helps keep the lockfile aligned with your actual usage and
eliminates many synchronization warnings.

If startup messages about being out of sync persist after enabling this setting, use
renv::restore() to sync your local library with the lockfile, or renv::snapshot() to
update the lockfile with your current package versions.

For more details on renv configuration options, see the official renv documentation2.

14.1.4 Using projects with renv

If you’re starting to work on an ongoing project that already has renv set up, follow these
steps to ensure that you’re using the same project versions.

1. Install the renv package by running install.packages("renv")
2. Pull the most updated version of the project from GitHub
3. Open the project’s RProject file
4. Run renv::restore(). In our lab’s projects, this is often already found at the top

of the config file, so you can just run scripts as is.
5. This will pull up a list of the project’s packages that need to be updated for you

to be consistent with the project. The console will ask if you want to proceed with
updating these packages - type “Y” to continue.

2https://rstudio.github.io/renv/

119

https://rstudio.github.io/renv/

14 Reproducible Environments

6. Wait for the correct versions of each package to install/update. This may take some
time, depending on how many packages the project uses.

7. Your R environment should now be using the same package versions as specified in
the renv lock file. You should now be able to replicate the code.

8. If you make edits to the code and introduce new/updated packages, see the section
above for instructions on how to make updates.

120

15 Code Publication

Adapted by UCD-SeRG team from original by Nolan Pokpongkiat1

15.1 Checklist overview

1. Fill out file headers
2. Clean up comments
3. Document functions
4. Remove deprecated filepaths
5. Ensure project runs via bash
6. Complete the README
7. Clean up feature branches
8. Create Github release

15.2 Fill out file headers

Every file in a project should have a header that allows it to be interpreted on its own. It
should include the name of the project and a short description for what this file (among
the many in your project) does specifically. See template here.2

15.3 Clean up comments

Make sure comments in the code are for code documentation purposes only. Do not leave
comments to self in the final script files.

15.4 Document functions

Every function you write must include a header to document its purpose, inputs, and
outputs. See template for the function documentation here.3

1https://jadebc.github.io/lab-manual/code-publication.html
2https://ucd-serg.github.io/lab-manual/coding-practices.html#file-headers
3https://ucd-serg.github.io/lab-manual/coding-practices.html#function-documentation

121

https://jadebc.github.io/lab-manual/code-publication.html
https://ucd-serg.github.io/lab-manual/coding-practices.html#file-headers
https://ucd-serg.github.io/lab-manual/coding-practices.html#function-documentation

15 Code Publication

15.5 Remove deprecated filepaths

All file paths should be defined in 0-config.R, and should be set relative to the project
working directory. All absolute file paths from your local computer should be removed, and
replaced with a relative path. If a third party were to re-run this analysis, if they need to
download data from a separate source and change a filepath in the 0-config.R to match,
make sure to specify in the README which line of 0-config.R needs to be substituted.

15.6 Ensure project runs via bash

The project should be configured to be entirely reproducible by running a master bash
script, run-project.sh, which should live at the top directory. This bash script can call other
bash scripts in subfolders, if necessary. Bash scripts should use the runFileSaveLogs utility
script, which is a wrapper around the Rscript command, allowing you to specify where
.Rout log files are moved after the R scripts are run.

See usage and documentation here.4

15.7 Complete the README

A README.md should live at the top directory of the project. This usually includes a
Project Overview and a Directory Structure, along with the names of the contributors and
the Creative Commons License. See below for a template:

Overview

To date, coronavirus testing in the US has been extremely limited. Confirmed
COVID-19 case counts underestimate the total number of infections in the
population. We estimated the total COVID-19 infections – both symptomatic
and asymptomatic – in the US in March 2020. We used a semi-Bayesian approach
to correct for bias due to incomplete testing and imperfect test performance.

Directory structure

• 0-config.R: configuration file that sets data directories, sources base func-
tions, and loads required libraries

• 0-base-functions: folder containing scripts with functions used in the
analysis

– 0-base-functions.R: R script containing general functions used across
the analysis

– 0-bias-corr-functions.R: R script containing functions used in bias
correction

– 0-bias-corr-functions-undertesting.R: R script containing functions
used in bias correction to estimate the percentage of underestimation
due to incomplete testing vs. imperfect test accuracy

– 0-prior-functions.R: R script containing functions to generate priors

4https://ucd-serg.github.io/lab-manual/unix.html#example-code-for-runfilesavelogs

122

https://ucd-serg.github.io/lab-manual/unix.html#example-code-for-runfilesavelogs

15 Code Publication

• 1-data: folder containing data processing scripts NOTE: some scripts are
deprecated

• 2-analysis: folder containing analysis scripts. To rerun all scripts in this
subdirectory, run the bash script 0-run-analysis.sh.

– 1-obtain-priors-state.R: obtain priors for each state

– 2-est-expected-cases-state.R: estimate expected cases in each state

– 3-est-expected-cases-state-perf-testing.R: estimate expected cases in
each state, estimate the percentage of underestimation due to incom-
plete testing vs. imperfect test accuracy

– 4-obtain-testing-protocols.R: find testing protocols for each state.

– 5-summarize-results.R: summarize results; obtain results for in text
numerical results.

• 3-figure-table-scripts: folder containing figure scripts. To rerun all scripts
in this subdirectory, run the bash script 0-run-figs.sh.

– 1-fig-testing.R: creates plot of testing patterns by state over time

– 2-fig-cases-usa-state-bar.R: creates bar plot of confirmed vs. estimated
infections by state

– 3a-fig-map-usa-state.R: creates map of confirmed vs. estimated infec-
tions by state

– 3b-fig-map-usa-state-shiny.R: creates map of confirmed vs. estimated
infections by state with search functionality by state

– 4-fig-priors.R: creates figure with priors for US as a whole

– 5-fig-density-usa.R: creates figure of distribution of estimated cases in
the US

– 6-table-data-quality.R: creates table of data quality grading from
COVID Tracking Project

– 7-fig-testpos.R: creates figure of the probability of testing positive
among those tested by state

– 8-fig-percent-undertesting-state.R: creates figure of the percentage of
under estimation due to incomplete testing

• 4-figures: folder containing figure files.

• 5-results: folder containing analysis results objects.

• 6-sensitivity: folder containing scripts to run the sensitivity analyses

Contributors: UCD-SeRG team (adapted from original contributors: Jade
Benjamin-Chung, Sean L. Wu, Anna Nguyen, Stephanie Djajadi, Nolan N.
Pokpongkiat, Anmol Seth, Andrew Mertens)

Wu SL, Mertens A, Crider YS, Nguyen A, Pokpongkiat NN, Djajadi S, et
al. Substantial underestimation of SARS-CoV-2 infection in the United States
due to incomplete testing and imperfect test accuracy. medRxiv. 2020;
2020.05.12.20091744. doi:10.1101/2020.05.12.20091744

123

15 Code Publication

When possible, also include a description of the RDS results that are generated, detailing
what data sources were used, where the script lives that creates it, and what information
the RDS results hold.

15.8 Clean up feature branches

In the remote repository on Github, all feature branches aside from master should be
merged in and deleted. All outstanding PRs should be closed.

15.9 Create Github release

Once all of these items are verified, create a tag to make a Github release, which will tag
the repository, creating a marker at this specific point in time.

Detailed instructions here.5

5https://docs.github.com/en/enterprise/2.13/user/articles/creating-releases

124

https://docs.github.com/en/enterprise/2.13/user/articles/creating-releases

16 Data Publication

Adapted from Fanice Nyatigo and Ben Arnold’s chapter in the Proctor-UCSF Lab Manual1

16.1 Overview

Warning! NEVER push a dataset into the public domain (e.g., GitHub,
OSF) without first checking with lab leadership to ensure that it is appropriately
de-identified and we have approval from the sponsor and/or human subjects
review board to do so. For example, we will need to re-code participant IDs
(even if they contain no identifying information) before making data public to
completely break the link between IDs and identifiable information stored on our
servers.

If you are releasing data into the public domain, then consider making available at minimum
a .csv file and a codebook of the same name (note: you should have a codebook for
internal data as well). We often also make available .rds files as well. For example, your
mystudy/data/public directory could include three files for a single dataset, two with the
actual data in .rds and .csv formats, and a third that describes their contents:

analysis_data_public.csv
analysis_data_public.rds
analysis_data_public_codebook.txt

In general, datasets are usually too big to save on GitHub, but occasionally they are
small. Here is an example of where we actually pushed the data directly to GitHub:
https://github.com/ben-arnold/enterics-seroepi/tree/master/data .

If the data are bigger, then maintaining them under version control in your git repository
can be unwieldy. Instead, we recommend using another stable repository that has version
control, such as the Open Science Framework (“Open Science Framework,” n.d.). For
example, all of the data from the WASH Benefits trials (led by investigators at Berkeley,
icddr,b, IPA-Kenya and others) are all stored through data components nested within in
OSF projects: https://osf.io/tprw2/. Another good option is Dryad Digital Repository
(“Dryad Digital Repository,” n.d.) or institutional digital repositories.

1https://urlisolation.com/browser?clickId=524DE241-3F8F-4C98-B619-3C278374BF64&traceToken=
1728923499%3Bucsfmed_hosted%3Bhttps%3A%2F%2Fproctor-ucsf.github.io%2Fd&url=https%3A%
2F%2Fproctor-ucsf.github.io%2Fdcc-handbook%2Fpublicdata.html

125

https://urlisolation.com/browser?clickId=524DE241-3F8F-4C98-B619-3C278374BF64&traceToken=1728923499%3Bucsfmed_hosted%3Bhttps%3A%2F%2Fproctor-ucsf.github.io%2Fd&url=https%3A%2F%2Fproctor-ucsf.github.io%2Fdcc-handbook%2Fpublicdata.html
https://urlisolation.com/browser?clickId=524DE241-3F8F-4C98-B619-3C278374BF64&traceToken=1728923499%3Bucsfmed_hosted%3Bhttps%3A%2F%2Fproctor-ucsf.github.io%2Fd&url=https%3A%2F%2Fproctor-ucsf.github.io%2Fdcc-handbook%2Fpublicdata.html
https://urlisolation.com/browser?clickId=524DE241-3F8F-4C98-B619-3C278374BF64&traceToken=1728923499%3Bucsfmed_hosted%3Bhttps%3A%2F%2Fproctor-ucsf.github.io%2Fd&url=https%3A%2F%2Fproctor-ucsf.github.io%2Fdcc-handbook%2Fpublicdata.html

16 Data Publication

We recommend cross-linking public files in GitHub (scripts/notebooks only) and
OSF/Dryad/institutional digital repositories.

Below are the main steps to making data public, after finalizing the analysis datasets and
scripts:
1. Remove Protected Health Information (PHI)
2. Create public IDs or join already created public IDs to the data
3. Create an OSF repository and/or Dryad/institutional digital repository
4. Edit analysis scripts to run using the public datasets and test (optional)
5. Create a public github page for analysis scripts and link to OSF and/or Dryad/Zenodo
6. Go live

16.2 Removing PHI

Once the data is finalized for analysis, the first step is to strip it of Protected Health
Information (PHI), or any other data that could be used to link back to specific participants,
such as names, birth dates, or GPS coordinates at the village/neighborhood level or below.
PHI includes, but is not limited to:

16.2.1 Personal information

These are identifiers that directly point to specific individuals, such as:
- Names, addresses, photographs, date of birth
- A combination of age, sex, and geographic location (below population 20,000) is considered
identifiable

16.2.2 Dates

Any specific dates (e.g., study visit dates, birth dates, treatment dates) are usually prob-
lematic.
- If a dataset requires high resolution temporal information, coarsen visit or measurement
dates to be two variables: year and week of the year (1-52).
- If a dataset requires age, provide that information without a birth date (typically month
resolution is sufficient)

Caution! If making changes to the format of dates or ages, make sure your
analysis code runs on these modified versions of the data (step 3)!

126

16 Data Publication

16.2.3 Geographic information

Do not include GPS coordinates (longitude, latitude) except in special circumstances where
they have been obfuscated/shifted. Reach out to lab leadership before doing this because it
can be complicated.

Do not include place names or codes (e.g., US Zip Codes) if the place contains <20,000
people. For villages or neighborhoods, code them with uninformative IDs. For sub-districts
or districts, names are fine.

If an analysis requires GPS locations (e.g., to make a map), then typically we include a
disclaimer in the article’s data availability statement that explains we cannot make GPS
locations public to protect participant confidentiality. As a middle ground, we typically
make our code public that runs on the geo-located data for transparency, even if independent
researchers can’t actually run that code (although please be careful to ensure the code itself
does not in any way include geographic identifiers).

For more examples of what constitutes PHI, please refer to this link: https://cphs.berke-
ley.edu/hipaa/hipaa18.html

For learning about working with geospatial data, see the UC Davis DataLab GIS workshops2,
including resources on QGIS and spatial SQL.

16.3 Create public IDs

16.3.1 Rationale

The UC Davis IRB requires that public datasets not include the original study IDs to
identify participants or other units in the study (such as village IDs). The reason is that
those IDs are linked in our private datasets to PHI. By creating a new set of public IDs,
the public dataset is one step further removed from the potential to link to PHI.

16.3.2 A single set of public IDs for each study

For each study, it is ideal to create a single set of public IDs whenever possible. We could
create a new set of public IDs for every public dataset, but the downside is that independent
researchers could no longer link data that might be related. By creating a single set of
public IDs associated with each internal study ID, public files retain the link.

Maintaining a single set of public IDs requires a shared “bridge” dataset, that includes a
row for each study ID and has the associated public ID. For studies with multiple levels of
ID, we would typically have separate bridge datasets for each type of ID (e.g,. cluster ID,
participant ID, etc.)

Create a public ID that can be used to uniquely identify participants and that can internally
be linked to the original study IDs. We recommend creating a subdirectory in the study’s
shared data directory to store the public IDs. The shared location enables multiple projects
to use the same IDs. Create the IDs using a script that reads in the study IDs, creates a
unique (uninformative) public ID for the study IDs, and then saves the bridge dataset. The
script should be saved in the same directory as the public ID files.

2https://github.com/ucdavisdatalab

127

https://github.com/ucdavisdatalab

16 Data Publication

Caution! Note that small differences may arise if the new public IDs do
not necessarily order participants in the same way as the internal IDs. The
small differences are all in estimates that rely on resampling, such as Bootstrap
CIs, permutation P-values, and TMLE, as the resampling process may lead tp
slightly different re-samples. The key here, to ensure the results are consistent
irrespective of the dataset used, is simply to not assign public IDs randomly. Use
rank() on the internal ID instead of row_number() to ensure that the order is
always the same.

16.3.3 Example scripts

We have created a self-contained and reproducible example that you can run and replicate
when making data public for your projects. It contains the following files and folders:

1. data/final/- folder containing the projects final data in both csv and rds formats

2. code/DEMO_generate_public_IDs.R- creates randomly generated public IDs that
can be matched to the trial’s assigned patient IDs.

3. data/make_public/DEMO_internal_to_publicID.csv- the output from step #2, a
bridge dataset with two variables- the new public ID and the patient’s assigned ID.

4. code/DEMO_create_public_datasets.R- joins the public IDs to the trial’s full
dataset, and strips it of the assigned patient ID.

5. data/public/- folder containing the output from step #3- de-identified public dataset,
in csv and rds formats, with uniquely identifying public IDs that cannot be easily
linked back to the patient’s ID.

The example workflow is accessible via GitHub: https://github.com/proctor-ucsf/dcc-
handbook/tree/master/templates/making-data-public

16.4 Create a data repository

First, ensure that you create a codebook and metadata file for each public dataset See
the DCC guide on Documenting datasets3. Use the same name as the datasets, but with
“-codebook.txt” / “-codebook.html” / “-codebook.csv” at the end (depending on the file
format for the codebook). One nice option is the R codebook package, which also generates
JSON output that is machine-readable.

For additional guidance on data documentation best practices, see the UC Davis DataLab
workshop on data documentation4.

3https://proctor-ucsf.github.io/dcc-handbook/datawrangling.html#documenting-datasets
4https://github.com/ucdavisdatalab/workshop_how-to-data-documentation

128

https://proctor-ucsf.github.io/dcc-handbook/datawrangling.html#documenting-datasets
https://github.com/ucdavisdatalab/workshop_how-to-data-documentation

16 Data Publication

16.4.1 Steps for creating an Open Science Framework (OSF) repository:

1. Create a new OSF project per these instructions: https://help.osf.io/article/252-
create-a-project

2. Create a data component and upload the datasets in .csv and .rds format along with
the codebooks. The primary format for public dissemination is .csv but we make the
.rds files available too as auxiliary files for convenience.

3. Create a notebook component and upload the final .html files (which will not be on
github… but see optional item below)

4. On the OSF landing Wiki, provide some context. Here is a recent example:
https://osf.io/954bt/

5. Create a Digital Object Identifier (DOI) for the repository. A DOI is a unique identifier
that provides a persistent link to content, such as a dataset in this case. Learn more
about DOIs5

6. Optional: Complete the software checklist and system requirement guide for the
analysis to guide others. Include it on the GitHub README for the project:
https://github.com/proctor-ucsf/mordor-antibody

16.5 Edit and test analysis scripts

Make minor changes to the analysis scripts so that they run on public data. If using version
control in GitHub, the most straight-forward way is to create a branch from the main git
branch that reads in the public files, and then renames the new public ID variable, e.g.,
“id_public” to the internally recognized ID variable name, e.g. “recordID”, when reading
in the public data. Re-run all the analysis scripts to ensure that they still work with the
public version of the dataset.

16.6 Create a public GitHub page for public scripts

At minimum, we should include all of the scripts required to run the analyses. IMPOR-
TANT: ensure you have taken a snapshot and saved your computing environment using
the renv package (renv).

See examples:
- ACTION - https://github.com/proctor-ucsf/ACTION-public
- NAITRE - https://github.com/proctor-ucsf/NAITRE-primary

Caution! Read through the scripts carefully to ensure there is no PHI in the
code itself

Once a public GitHub page exists, you can create a new component on an OSF project
(step 3, above) and link it to the public version of the GitHub repo.

5https://researchdata.princeton.edu/research-lifecycle-guide/publishing-and-preservation/dois

129

https://researchdata.princeton.edu/research-lifecycle-guide/publishing-and-preservation/dois

16 Data Publication

16.7 Go live

On GitHub, it is useful to create an official “release” version to freeze the repository, where
you can have “associated files” with each version. Include the .html notebook output as
additional files — since they aren’t tracked in GitHub, it does provide a way of freezing
/ saving the HTML output for us and others. OSF examples of a studies from UCSF’s
Proctor Foundation:
- ACTION - https://osf.io/ca3pe/
- NAITRE - https://osf.io/ujeyb/
- MORDOR Niger antibody study - https://osf.io/dgsq3/

Further reading on end-to-end data management: How to Store and Manage Your Data -
PLOS (“How to Store and Manage Your Data,” n.d.)

130

17 High-performance computing (HPC)

Adapted by UCD-SeRG team from original by Anna Nguyen, Jade Benjamin-Chung, and
Gabby Barratt Heitmann1

When you need to run a script that requires a large amount of RAM, large files, or that uses
parallelization, UC Davis provides several high-performance computing (HPC) resources.

17.1 UC Davis Computing Resources

17.1.1 Available Resources

UC Davis HPC Clusters: - Farm Cluster (hpc.ucdavis.edu2): UC Davis’s primary
HPC cluster providing shared computing resources for research

PHS Shared Compute Environments: For lab members affiliated with the School of
Public Health Sciences (PHS), additional shared computing environments are available.
These environments provide secure, HIPAA-compliant computing resources suitable for
working with sensitive health data.

• Shiva (shiva.ucdavis.edu): SLURM-based cluster for computational work
• Mercury (mercury.ucdavis.edu): RStudio GUI computing environment

For detailed information about PHS shared compute environments, including access pro-
cedures, security guidelines, and usage policies, please refer to the PHS Shared Compute
Environments Guide3.

Contact lab leadership for assistance with: - Requesting access to computing resources
- Choosing the appropriate computing environment for your project - Setting up your
computing environment

17.2 Getting started with SLURM clusters

To access a UC Davis HPC cluster, in terminal, log in using SSH. For example, to access
shiva:

ssh USERNAME@shiva.ucdavis.edu

1https://jadebc.github.io/lab-manual/slurm.html
2https://hpc.ucdavis.edu/
3assets/files/PHS_Shared_Compute_Environments.pdf

131

https://jadebc.github.io/lab-manual/slurm.html
https://hpc.ucdavis.edu/
assets/files/PHS_Shared_Compute_Environments.pdf

17 High-performance computing (HPC)

You will be prompted to enter your UC Davis credentials and may need to complete
two-factor authentication.

Once you log in, you can view the contents of your home directory in command line
by entering cd $HOME. You can create subfolders within this directory using the mkdir
command. For example, you could make a “code” subdirectory and clone a Github repository
there using the following code:

cd $HOME
mkdir code
git clone https://github.com/jadebc/covid19-infections.git

17.2.1 One-Time System Set-Up

To keep the install packages consistent across different nodes, you will need to explicitly set
the pathway to your R library directory.

Open your ~/.Renviron file (vi ~/.Renviron) and append the following line:

Note: Once you open the file using vi [file_name], you must press i (on Mac OS) or
Insert (on Windows) to make edits. After you finish, hit Esc to exit editing mode and
type :wq to save and close the file.

R_LIBS=~/R/x86_64-pc-linux-gnu-library/4.0.2

Alternatively, run an R script with the following code on the cluster:

r_environ_file_path = file.path(Sys.getenv("HOME"), ".Renviron")
if (!file.exists(r_environ_file_path)) file.create(r_environ_file_path)

cat("\nR_LIBS=~/R/x86_64-pc-linux-gnu-library/4.0.2",
file = r_environ_file_path, sep = "\n", append = TRUE)

To load packages that run off of C++, you’ll need to set the correct compiler options in
your R environment.

Open the Makevars file (vi ~/.R/Makevars) and append the following lines

CXX14FLAGS=-O3 -march=native -mtune=native -fPIC
CXX14=g++

Alternatively, create an R script with the following code, and run it on the cluster:

dotR = file.path(Sys.getenv("HOME"), ".R")
if (!file.exists(dotR)) dir.create(dotR)

M = file.path(dotR, "Makevars")
if (!file.exists(M)) file.create(M)

cat("\nCXX14FLAGS=-O3 -march=native -mtune=native -fPIC",
"CXX14=g++",
file = M, sep = "\n", append = TRUE)

132

17 High-performance computing (HPC)

17.3 Moving files to the cluster

The $HOME directory is a good place to store code and small test files. Save large files to
the $SCRATCH directory or other designated storage areas. Check with the UC Davis HPC
documentation4 for specific quotas and retention policies. It’s best to create a bash script
that records the file transfer process for a given project. See example code below:

note: the following steps should be done from your local
(not after ssh-ing into the cluster)

securely transfer folders from Box to cluster home directory
note: the -r option is for folders and is not needed for files
scp -r "Box/project-folder/folder-1/" USERNAME@shiva.ucdavis.edu:/home/users/USERNAME/

securely transfer folders from Box to your cluster scratch directory
scp -r "Box/project-folder/folder-2/" USERNAME@shiva.ucdavis.edu:/scratch/users/USERNAME/

securely transfer folders from Box to shared scratch directory
scp -r "Box/project-folder/folder-3/" USERNAME@shiva.ucdavis.edu:/scratch/group/GROUPNAME/

17.4 Installing packages on the cluster

When you begin working on a cluster, you will most likely encounter problems with
installing packages. To install packages, login to the cluster on the command line and open
a development node. Do not attempt to do this in RStudio Server, as you will have to re-do
it for every new session you open.

ssh USERNAME@shiva.ucdavis.edu

sdev

You should only have to install packages once. The cluster may require that you specify the
repository where the package is downloaded from. You may also need to add an additional
argument to install.packages to prevent the packages from locking after installation:

install.packages(<PACKAGE NAME>, repos="https://cran.r-project.org",
INSTALL_opts = "--no-lock")

In order for some R packages to work on clusters, it is necessary to load specific software
modules before running R. These must be loaded each time you want to use the package in R.
For example, for spatial and random effects analyses, you may need the modules/packages
below. These modules must also be loaded on the command line prior to opening R in
order for package installation to work.

4https://hpc.ucdavis.edu/

133

https://hpc.ucdavis.edu/

17 High-performance computing (HPC)

module --force purge # remove any previously loaded modules, including math and devel
module load math
module load math gmp/6.1.2
module load devel
module load gcc/10
module load system
module load json-glib/1.4.4
module load curl/7.81.0
module load physics
module load physics udunits geos
module load physics gdal/2.2.1 # for R/4.0.2
module load physics proj/4.9.3 # for R/4.0.2
module load pandoc/2.7.3

module load R/4.0.2

R # Open R in the Shell window to install individual packages or test code
Rscript install-packages.R # Alternatively, run a package installation script in the Shell window

Figuring out the issues with some packages will require some trial and error. If you are still
encountering problems installing a package, you may have to install other dependencies
manually by reading through the error messages. If you try to install a dependency from
CRAN and it isn’t working, it may be a module. You can search for it using the module
spider command:

module spider DEPENDENCY NAME

You can also reach out to UC Davis HPC support for help. Visit hpc.ucdavis.edu5 for
support information.

17.5 Testing your code

Both of the following ways to test code on a cluster are recommended for making small
changes, such as editing file paths and making sure the packages and source files load. You
should write and test the functionality of your script locally, only testing on the cluster
once major bugs are out.

17.5.1 The command line

There are two main ways to explore and test code on computing clusters. The first way
is best for users who are comfortable working on the command line and editing code in
base R. Even if you are not comfortable yet, this is probably the better way because these
commands will transfer between different cluster computers using Slurm.

Typically, you will want to initially test your scripts by initiating a development node using
the command sdev. This will allocate a small amount of computing resources for 1 hour.
You can access R via command line using the following code.

5https://hpc.ucdavis.edu/

134

https://hpc.ucdavis.edu/

17 High-performance computing (HPC)

open development node
sdev

Load all the modules required by the packages you are using
module load MODULE NAME

Load R (default version)*
module load R

initiate R in command line
R

*Note: for collaboration purposes, it’s best for everyone to work with one version of R.
Check what version is being used for the project you are working on. Some packages only
work with some versions of R, so it’s best to keep it consistent.

17.5.2 RStudio Server

For RStudio GUI computing, UC Davis provides mercury.ucdavis.edu. This is accessed
through a web browser and provides an RStudio interface. You will be prompted to
authenticate with your UC Davis credentials. This is the best way to work with R for
people who are not comfortable accessing & editing in base R in a Shell application.

Note that mercury does not have SLURM, so it’s best suited for interactive work and
smaller computations. For large-scale computations requiring SLURM job scheduling, use
shiva.ucdavis.edu instead.

When using RStudio Server, you can test your code interactively. However, do NOT use
the RStudio Server’s Terminal to install packages and configure your environment for
SLURM-based clusters, as you will likely need to re-do it for every session/project. For
SLURM clusters, use the command line approach described earlier.

17.5.3 Filepaths & configuration on the cluster

In most cases, you will want to test that the file paths work correctly on the cluster. You
will likely need to add code to the configuration file in the project repository that specifies
cluster-specific file paths. Here is an example:

set cluster-specific file paths
if(Sys.getenv("LMOD_SYSHOST")!=""){

cluster_path = paste0(Sys.getenv("HOME"), "/project-name/")

data_path = paste0(cluster_path, "data/")
results_path = paste0(cluster_path, "results/")

}

135

17 High-performance computing (HPC)

17.6 Storage & group storage access

17.6.1 Individual storage

There are multiple places to store your files on computing clusters. Each user has their own
$HOME directory as well as a $SCRATCH directory. These are directories that can be accessed
via the command line once you’ve logged in to the cluster:

cd $HOME
cd /home/users/USERNAME # Alternatively, use the full path

cd $SCRATCH
cd /scratch/users/USERNAME # Full path

You can also navigate to these using the File Explorer if available through a web interface.

$HOME typically has a volume quota (e.g., 15 GB). $SCRATCH typically has a larger volume
quota (e.g., 100 TB), but files here may get deleted after a certain period of inactivity.
Thus, use $SCRATCH for test files, exploratory analyses, and temporary storage. Use $HOME
for long-term storage of important files and more finalized analyses.

Check with the UC Davis HPC documentation6 for specific storage options and quotas.

17.6.2 Group storage

The lab may have shared $GROUP_HOME and $GROUP_SCRATCH directories to store files for
collaborative use. These typically have larger quotas and may have different retention
policies. You can access these via the command line or navigate to them using the File
Explorer:

cd $GROUP_HOME
cd /home/groups/GROUPNAME

cd $GROUP_SCRATCH
cd /scratch/groups/GROUPNAME

However, saving files to group storage can be tricky. You can try using the scp command
in the section “Moving files to the cluster” to see if you have permission to add files to
group directories. Read the next section to ensure any directories you create have the right
permissions.

17.6.3 Folder permissions

Generally, when we put folders in $GROUP_HOME or $GROUP_SCRATCH, it is so that we can
collaborate on an analysis within the research group, so multiple people need to be able to
access the folders. If you create a new folder in $GROUP_HOME or $GROUP_SCRATCH, please
check the folder’s permissions to ensure that other group members are able to access its
contents. To check the permissions of a folder, navigate to the level above it, and enter ls
-l. You will see output like this:

6https://hpc.ucdavis.edu/

136

https://hpc.ucdavis.edu/

17 High-performance computing (HPC)

drwxrwxrwx 2 jadebc jadebc 2204 Jun 17 13:12 myfolder

Please review this website7 to learn how to interpret the code on the left side of this output.
The website also tells you how to change folder permissions. In order to ensure that all
users and group members are able to access a folder’s contents, you can use the following
command:

chmod ugo+rwx FOLDER_NAME

17.7 Running big jobs

Once your test scripts run successfully, you can submit an sbatch script for larger jobs.
These are text files with a .sh suffix. Use a text editor like Sublime to create such a script.
Documentation on sbatch options is available from Slurm Workload Manager (“Slurm
Workload Manager: Sbatch Documentation,” n.d.). Here is an example of an sbatch script
with the following options:

• job-name=run_inc: Job name that will show up in the SLURM system
• begin=now: Requests to start the job as soon as the requested resources are available
• dependency=singleton: Jobs can begin after all previously launched jobs with the

same name and user have ended.
• mail-type=ALL: Receive all types of email notification (e.g., when job starts, fails,

ends)
• cpus-per-task=16: Request 16 processors per task. The default is one processor per

task.
• mem=64G: Request 64 GB memory per node.
• output=00-run_inc_log.out: Create a log file called 00-run_inc_log.out that

contains information about the Slurm session
• time=47:59:00: Set maximum run time to 47 hours and 59 minutes. If you don’t

include this option, the cluster will automatically exit scripts after 2 hours of run
time (default may vary by cluster).

The file analysis.out will contain the log file for the R script analysis.R.

#!/bin/bash

#SBATCH --job-name=run_inc
#SBATCH --begin=now
#SBATCH --dependency=singleton
#SBATCH --mail-type=ALL
#SBATCH --cpus-per-task=16
#SBATCH --mem=64G
#SBATCH --mem=64G
#SBATCH --output=00-run_inc_log.out
#SBATCH --time=47:59:00

cd $HOME/project-code-repo/2-analysis/

7https://www.chriswrites.com/how-to-change-file-permissions-using-the-terminal/

137

https://www.chriswrites.com/how-to-change-file-permissions-using-the-terminal/

17 High-performance computing (HPC)

module purge

load R version 4.0.2 (required for certain packages)
module load R/4.0.2

load gcc, a C++ compiler (required for certain packages)
module load gcc/10

load software required for spatial analyses in R
module load physics gdal
module load physics proj

R CMD BATCH --no-save analysis.R analysis.out

To submit this job, save the code in the chunk above in a script called myjob.sh and then
enter the following command into terminal:

sbatch myjob.sh

To check on the status of your job, enter the following code into terminal:

squeue -u $USERNAME

138

18 Working with AI

AI-powered coding assistants1 can dramatically accelerate and improve your work, but they
require careful and responsible use. Lab members who use AI tools must adhere to the
following guidelines:

18.1 Responsibility for validation

You are fully responsible for checking and validating all AI-generated code and
content. AI tools can make mistakes, generate insecure code, produce incorrect logic, or
suggest approaches that are inappropriate for our specific research context. Before using
any AI-generated code:

� Carefully review the code to ensure you understand what it does
� Test the code thoroughly to verify it works as expected
� Verify that the logic is appropriate for your specific use case
� Check that the code follows our lab’s coding standards and best practices
� Ensure the code does not introduce security vulnerabilities or data privacy issues

Exclamation-Triangle Warning

Never blindly use AI-generated code without fully understanding it. If you don’t
completely understand what the AI has suggested, take the time to learn or ask a
colleague for help.

18.2 Disclosure of AI use

You must clearly state whenever you have used AI tools in your work. This is
essential for transparency and reproducibility. Specifically:

• In code comments, note when AI tools were used to generate or significantly modify
code

• In commit messages, mention if AI tools assisted with the changes
• In manuscripts and reports, acknowledge AI tool usage in the methods or acknowl-

edgments section
• In presentations, disclose AI assistance when relevant

Example code comment:

The following function was generated with assistance from GitHub Copilot
and has been reviewed and tested to ensure correctness

1https://en.wikipedia.org/wiki/AI-assisted_software_development

139

https://en.wikipedia.org/wiki/AI-assisted_software_development

18 Working with AI

18.3 Attribution of sources

When using AI tools to generate content that borrows from or adapts existing
sources, you must ensure proper attribution. AI tools sometimes paraphrase or
adapt content from documentation, guides, or other resources without clearly indicating
the original source. It is your responsibility to:

• Ask the AI tool to identify and properly cite sources when it borrows or adapts content
• Verify that any content the AI generates includes appropriate citations
• Add citations yourself if the AI fails to do so
• Follow appropriate attribution practices for the type of content (code comments,

documentation, academic writing, etc.)

When instructing AI tools to create documentation or written content, explicitly request
that they provide proper attribution for any borrowed or adapted material. For example:
“Please quote from and paraphrase [source], with proper attribution” rather than simply
asking it to summarize information on a topic.

18.4 Using AI for Journal Articles

When using AI tools to help develop journal articles and other academic writing, you
must take special care to ensure transparency, maintain intellectual ownership, and avoid
plagiarism. The following practices help achieve these goals.

18.4.0.1 Establish a Clear Track Record

Working with AI through GitHub creates valuable documentation of your
contributions versus the AI’s. This track record can be crucial if reviewers or editors
question your use of AI tools.

GitHub Pull Requests and Issues provide:

• Attribution clarity: Each commit shows exactly who (you or @copilot) made
which changes

• Audit trail: The full conversation history shows your instructions and the AI’s
responses

• Intellectual ownership: Your prompts and guidance demonstrate that the core
ideas are yours

• Transparency: Reviewers can see that you actively supervised and validated all AI
contributions

This transparency protects you if journal reviewers are skeptical about or opposed to AI use
in research. You can point to the PR history to demonstrate that you maintained control
and responsibility for the work.

140

18 Working with AI

18.4.0.2 Write Out Your Core Ideas in Prompts

Make your prompts explicit and detailed to establish that the ideas originate
from you, not from the AI.

When requesting AI assistance with academic writing:

• State your research question, hypothesis, or argument clearly
• Outline the structure and key points you want to make
• Specify the evidence or data you want to include
• Describe the logic connecting your points
• Explain the interpretation or conclusions you want to draw

Example of a good prompt:

I need help writing the discussion section for a study on social determinants of
health. My core argument is that [your specific argument]. The key findings I
want to discuss are: [list findings]. I want to interpret these findings as suggesting
[your interpretation]. Please help me draft this section while preserving these
core ideas and citing relevant literature.

This approach creates clear evidence that the intellectual content came from you, while the
AI helped with expression, organization, and literature integration.

Avoid vague prompts like “write a discussion section about my results” that give the AI
too much creative control and make it unclear whose ideas are being presented.

18.4.0.3 Request Explicit Source Attribution

Always instruct AI tools to identify and cite their sources to prevent unknowing
plagiarism.

AI language models are trained on vast amounts of text, including published research. While
they don’t have direct access to their training data during generation, they may produce
text that closely resembles or paraphrases existing work without providing attribution. This
creates a plagiarism risk.

Best practices:

• Explicitly ask the AI to cite sources for any borrowed or adapted content
• Request that the AI indicate when it is drawing from specific works
• Verify that generated text includes proper citations
• Add citations yourself if the AI fails to provide them
• Cross-check AI-generated content against the cited sources to ensure accuracy

Example request:

Please help me write this section, and explicitly cite any sources you draw from
or adapt. If you’re paraphrasing from specific papers, identify them clearly so I
can verify the citations.

Remember that even with these precautions, you must still verify the accuracy and appro-
priateness of any AI-generated citations, as AI tools can sometimes generate plausible-but-
incorrect references (“hallucinate” citations).

141

18 Working with AI

18.4.0.4 Example Workflow

The development of this documentation section demonstrates these practices. See Issue
#1122 and PR #1453 for the complete development history, which shows:

1. Core ideas stated clearly: The issue description outlined specific concepts (trans-
parency through GitHub, writing explicit prompts, requesting source attribution)

2. Detailed instructions: The guidance specified what content should be created and
how it should be structured

3. Transparent record: The development history shows what was human-directed
versus AI-generated

4. Demonstrated accountability: The pull request provides a full audit trail of all
changes

When developing content for journal articles, a similar workflow creates documentation
that demonstrates responsible AI use and intellectual ownership. You can point to your
GitHub history to show reviewers that you directed the AI rather than simply accepting its
output.

18.4.0.5 Additional Considerations

When using AI for academic writing, also remember to:

• Disclose AI use: Follow journal policies on acknowledging AI assistance (see
Section 18.2)

• Maintain responsibility: You are accountable for all content, including AI-generated
text

• Verify accuracy: Always fact-check AI-generated claims and citations
• Preserve your voice: Ensure the writing reflects your thinking and style, not just

AI’s patterns
• Follow ethical guidelines: Comply with your institution’s and journals’ policies on

AI use

These practices help you benefit from AI assistance while maintaining the integrity, origi-
nality, and credibility of your academic work.

18.5 Coding Agents

We recommend working with AI coding agents4 to help you code5.

2https://github.com/UCD-SERG/lab-manual/issues/112
3https://github.com/UCD-SERG/lab-manual/pull/145
4https://github.com/features/copilot/agents
5https://en.wikipedia.org/wiki/AI-assisted_software_development

142

https://github.com/UCD-SERG/lab-manual/issues/112
https://github.com/UCD-SERG/lab-manual/pull/145
https://github.com/features/copilot/agents
https://en.wikipedia.org/wiki/AI-assisted_software_development

18 Working with AI

18.5.1 What are AI coding agents?

AI coding agents are AI agents6 specialized for coding. They differ from other AI coding
tools in important ways:

Compared to inline coding assistants (like traditional autocomplete), coding agents
work autonomously rather than providing suggestions as you type. They can navigate entire
codebases, execute commands, and complete multi-step tasks without constant human
guidance.

Compared to AI chatbots (like ChatGPT or Claude), coding agents don’t just generate
code snippets in conversation—they actively interact with your development environment.
While chatbots require you to copy code from a chat window and manually integrate it into
your project, coding agents directly read your codebase, make changes to files, run tests
and build commands, and create pull requests with their proposed changes. Chatbots are
conversational assistants; coding agents are autonomous development tools.

Coding agents are autonomous software programs that can:

• Understand and execute complex tasks: Coding agents can interpret natural
language instructions and break them down into actionable development tasks

• Navigate and modify codebases: They can read, understand, and edit multiple
files across a repository to implement features or fix bugs

• Run tools and commands: Coding agents can execute build commands, run tests,
use linters, and interact with development tools

• Make decisions autonomously: They can plan their approach, make technical
decisions, and adjust their strategy based on results

• Work iteratively: Coding agents can test their changes, identify issues, and refine
their solutions through multiple iterations

• Create comprehensive solutions: They can implement complete features that
span multiple files, including code, tests, and documentation

Coding agents operate in isolated environments where they can safely experiment and
validate changes before proposing them. This allows them to work more independently than
inline coding assistants, which require step-by-step human direction. The agent workflow
typically involves analyzing requirements, planning an implementation, making changes,
testing those changes, and creating a pull request with the results.

While coding agents can handle substantial development tasks, they still require human
oversight and review. The human developer remains responsible for:

• Reviewing the agent’s work
• Ensuring the solution meets requirements
• Verifying code quality and security
• Making the final decision to merge changes

18.5.2 AI Agents and the Technological Singularity

The emergence of sophisticated AI agents7 has prompted discussions about whether we are
witnessing or approaching a technological singularity8. Understanding this concept helps

6https://en.wikipedia.org/wiki/AI_agent
7https://en.wikipedia.org/wiki/Intelligent_agent
8https://en.wikipedia.org/wiki/Technological_singularity

143

https://en.wikipedia.org/wiki/AI_agent
https://en.wikipedia.org/wiki/Intelligent_agent
https://en.wikipedia.org/wiki/Technological_singularity

18 Working with AI

contextualize the rapid evolution of AI tools and our responsibility in using them.

18.5.2.1 What is the technological singularity?

The technological singularity is a hypothetical future point when technological growth
becomes uncontrollable and irreversible, resulting in unforeseeable changes to human
civilization. The concept, popularized by mathematician Vernor Vinge and futurist Ray
Kurzweil, typically involves the creation of artificial superintelligence that recursively
improves itself, leading to an intelligence explosion beyond human comprehension or
control.

18.5.2.2 Do current AI agents represent the singularity?

No, current AI coding agents (as of early 2026) do not represent the technological
singularity.

While modern AI agents demonstrate impressive capabilities, they remain fundamentally
different from the singularity scenario in several critical ways:

• Limited autonomy: Today’s AI agents operate within strict boundaries and require
human oversight. They cannot recursively improve their own core architecture or
develop capabilities beyond their training.

• Narrow intelligence: AI coding agents are specialized tools designed for specific
tasks. They lack general intelligence, self-awareness, or the ability to operate outside
their designed domain.

• Human dependency: These agents require human developers to: review their work,
provide direction, validate correctness, and make final decisions about their outputs.

• No recursive self-improvement: Current AI agents cannot fundamentally redesign
themselves or create more advanced versions of themselves autonomously. Any
improvements to AI systems still require human researchers and engineers.

• Controlled development environment: AI coding agents work in sandboxed
environments with explicit permissions and constraints. They cannot independently
acquire resources, modify their own constraints, or operate without human authoriza-
tion.

18.5.2.3 Why this matters for responsible AI use

Understanding that current AI agents are powerful but limited tools—not autonomous
superintelligences—has important implications:

• Maintain appropriate skepticism: AI agent outputs require the same critical
review as any other tool-generated code.

• Preserve human decision-making: The responsibility for code quality, security,
and correctness remains with human developers.

• Continue skill development: Using AI agents should enhance rather than replace
human expertise.

144

18 Working with AI

• Stay vigilant: While current agents don’t represent a singularity, the rapid pace of
AI development requires ongoing attention to emerging capabilities and risks.

The value of AI coding agents lies in their ability to accelerate human productivity and
learning, not in replacing human judgment or expertise. They are sophisticated tools that
augment human capabilities while remaining under human control and oversight.

18.5.2.4 Further reading

For thoughtful perspectives on AI consciousness and intelligence, see Douglas Hofstadter’s
reflections in “I Thought I Was in an AI Apocalypse. Then I Started Looking Closer.”9

18.5.3 Relative Advantages of AI and Humans

AI coding agents and human coders have complementary strengths. Understanding these
differences helps you decide when to delegate work to agents and when to handle tasks
yourself.

18.5.3.1 Comparative Strengths: Humans vs. AI Agents

Table 18.1 summarizes the relative advantages of human coders and AI coding agents across
different types of tasks:

Table 18.1: Relative advantages of humans and AI coding agents

Task Type Humans � AI agents �

Creative thinking � Humans excel at
understanding context,
handling ambiguous
requirements, and thinking
creatively about novel
problems

� AI agents struggle with
ambiguous requirements and
creative problem-solving in
unfamiliar domains

Algorithmic thinking � Humans make mistakes
when following repetitive
instructions and may
introduce inconsistencies

� AI agents excel at executing
well-defined, repetitive tasks
with precision and consistency

Or, if you prefer a more visual representation:

9https://www.nytimes.com/2023/07/13/opinion/ai-chatgpt-consciousness-hofstadter.html

145

https://www.nytimes.com/2023/07/13/opinion/ai-chatgpt-consciousness-hofstadter.html

18 Working with AI

Table 18.2: Relative advantages of humans and Agents

Humans AI Agents

Creative thinking

Algorithmic thinking

This pattern mirrors the evolution of programming itself. Just as almost no one writes
machine code anymore because higher-level languages and compilers handle those details,
most developers will increasingly spend less time writing low-level code. Instead, you’ll
describe what the system needs to do as clearly as possible, and AI agents will handle many
of the computational and coding details.

For most tasks, you won’t need to step in and manipulate code yourself. However, you’ll
still need strong coding skills to:

• Supervise and validate AI-generated code

146

18 Working with AI

• Handle edge cases that agents struggle with
• Make creative decisions about architecture and design
• Understand when agent suggestions are incorrect or suboptimal

18.5.3.2 Future Developments: World Models

As AI technology advances, the distinction between these strengths may shift. Yann LeCun,
2019 Turing Award winner and AI researcher at Meta and NYU, advocates for developing
“world models”—AI systems that understand and reason about the physical world, not just
language patterns (LeCun 2022).

World models aim to give AI systems:

• Persistent memory and reasoning: Understanding that persists across interactions
• Physical world understanding: Reasoning about how things work in reality, not

just in text
• Better handling of ambiguity: Using world knowledge to interpret unclear re-

quirements

As these technologies mature, AI agents may become better at tasks requiring contextual
understanding and creative problem-solving. This makes it even more important to develop
strong supervision and validation skills now, so you can effectively work with increasingly
capable AI systems.

18.5.4 How to Work with Coding Agents

GitHub Copilot coding agents can be used in several ways to automate development tasks:

18.5.4.1 Assigning Issues to Copilot

You can assign GitHub Issues directly to @copilot just like you would assign to a human
collaborator:

1. On GitHub.com: Navigate to an issue and assign it to Copilot in the assignees
section

2. In VS Code: In the GitHub Pull Requests or Issues view, right-click an issue and
select “Assign to Copilot”

3. From Copilot Chat: Delegate tasks to Copilot directly from the chat interface in
supported editors

18.5.4.2 The Agent Workflow

Once assigned an issue, the coding agent follows an autonomous workflow:

1. Analysis: Reviews the issue description, related discussions, repository instructions,
and codebase context

2. Planning: Determines what changes are needed and creates a work plan

147

18 Working with AI

3. Development: Works in an isolated GitHub Actions environment, modifies code,
runs tests and linters, and validates changes

4. Pull Request Creation: Creates a draft pull request with implemented changes,
audit logs, and a summary of modifications

5. Review and Iteration: You review the PR and can request changes; the agent will
iterate based on your feedback

18.5.4.3 Example: This Document

This very section you’re reading was created through the coding agent workflow:

1. Issue created: Issue #4210 requested adding discussion about benefits and hazards
of coding agents, including a Matrix film connection and best practices

2. Agent assigned: The issue was assigned to @copilot

3. Work completed: The agent analyzed the requirements, reviewed the repository
structure, and implemented the changes across multiple files

4. Pull request: PR #5011 was created with comprehensive content about coding
agents, including this “How to Work with Coding Agents” section, benefits and
hazards discussion, best practices, and firewall configuration details

5. Iteration: The PR received feedback comments requesting additional links, improved
wording, and this example section—all of which the agent addressed through follow-up
commits

This demonstrates the full lifecycle of working with a coding agent on a real documentation
task.

18.5.4.4 Collaborating with Coding Agents

Between iterations of asking coding agents to extend a PR, human collaborators can also
push changes directly to the PR branch. This allows for a collaborative workflow where
both humans and agents contribute:

• Human contributions: You can make quick fixes, add content, or refine the agent’s
work by pushing commits to the same branch

• Agent iterations: After your changes, you can ask the agent to continue working
on additional requirements

Important: Try to avoid pushing changes while the coding agent is actively working.
Simultaneous edits can produce conflicting diffs that:

• Need to be manually resolved
• May confuse both human and AI collaborators
• Could result in lost work or merge conflicts

10https://github.com/UCD-SERG/lab-manual/issues/42
11https://github.com/UCD-SERG/lab-manual/pull/50

148

https://github.com/UCD-SERG/lab-manual/issues/42
https://github.com/UCD-SERG/lab-manual/pull/50

18 Working with AI

Best practice: Wait for the agent to complete its current iteration (indicated by the PR
being updated) before pushing your own changes to the branch. Then assign new work to
the agent for the next iteration.

18.5.4.5 Directly Prompting for Pull Requests

You can also prompt Copilot to create pull requests without first creating an issue:

• Use Copilot Chat in your editor to describe the changes you want
• The agent will analyze your request and create a pull request
• This is useful for quick fixes or well-defined tasks

18.5.4.6 Important Safeguards

• Human approval required: Coding agents cannot merge their own changes
• Branch restrictions: Agents can only push to their own branches (e.g., copilot/*)
• Full transparency: All agent actions are logged and visible in the PR

18.5.4.7 Workflow Approval Requirements

When GitHub Copilot creates or updates a pull request, it cannot automatically trigger
GitHub Actions workflows. You must manually approve each workflow run by
clicking the approval button in the Actions tab or on the PR.

This manual approval requirement is a security measure that prevents potentially malicious
or unintended code execution. Because Copilot can modify any file in the repository—
including workflow files themselves or scripts called by workflows—allowing automatic
workflow execution could create security vulnerabilities.

Key points:

• No automatic approval: There is currently no way to bypass manual workflow
approval for Copilot PRs, even if you are the repository owner

• Security reasoning: Copilot could modify workflow files (.github/workflows/*.yml)
or scripts they execute, potentially injecting malicious code

• Impact on workflow: This means you need to actively monitor and approve workflow
runs as Copilot iterates on your issue, which can slow down the development cycle

Workaround considerations:

Some users have discussed using Personal Access Tokens (PATs) to allow Copilot to trigger
workflows on your behalf, but this approach has security implications and should be carefully
evaluated before implementation.

For more details and community discussion about this limitation, see:

• GitHub Community Discussion #16282612: Discussion about workflow approval
requirements

• GitHub Community Discussion #18396613: Product feedback on this topic

12https://github.com/orgs/community/discussions/162826
13https://github.com/orgs/community/discussions/183966

149

https://github.com/orgs/community/discussions/162826
https://github.com/orgs/community/discussions/183966

18 Working with AI

For detailed instructions, see GitHub Copilot coding agent documentation14.

18.5.5 Useful Prompt Formats

When working with coding agents, using clear and specific prompts helps achieve better
results. Here are some useful prompt formats that you can use when requesting assistance
from coding agents:

18.5.5.1 Common Task Patterns

Tidying up code:

• “tidy up [file, function, module, whole project]”
• Useful for improving code organization, consistency, and readability
• Example: “tidy up the data processing module”

Addressing failing workflows:

• “address failing workflows”
• Helps fix continuous integration (CI) failures, build errors, or test failures
• Example: “address failing workflows in the GitHub Actions pipeline”

Decomposing code:

• “decompose [function, quarto-file, etc]”
• Breaks down large or complex code into smaller, more manageable pieces
• Example: “decompose this analysis function into separate helper functions”

Updating content:

• “update [links, content, etc]”
• Refreshes outdated information, fixes broken links, or modernizes code
• Example: “update all package URLs in the documentation”

Expanding documentation:

• “expand [a section in a document]”
• Adds more detail, examples, or explanation to existing content
• Example: “expand the section on data validation with practical examples”

Condensing content:

• “condense [a section in a document]”
• Reduces verbosity while preserving essential information
• Example: “condense the installation instructions to be more concise”

Clarifying content:

• “clarify [a section in a document]”
• Improves clarity, removes ambiguity, or simplifies complex explanations
• Example: “clarify the explanation of the analysis workflow”

14https://docs.github.com/en/copilot/how-tos/use-copilot-agents/coding-agent

150

https://docs.github.com/en/copilot/how-tos/use-copilot-agents/coding-agent

18 Working with AI

18.5.5.2 Tips for Effective Prompts

• Be specific: Include file names, function names, or specific sections when possible
• Provide context: Explain what you want to achieve and why
• Set boundaries: Specify what should or shouldn’t change
• Request validation: Ask the agent to test or verify its changes when appropriate

18.5.6 Addressing Failing GitHub Actions Workflows

When GitHub Actions workflows fail, you can use Copilot to help diagnose and fix the
issues. However, it’s important to use the right prompts depending on whether the problem
is in your code or in the workflow configuration itself.

18.5.6.1 Scenario 1: Code Issues Found by Workflows (Most Common)

When to use: The workflow is functioning correctly, but it’s detecting problems in your
code (e.g., failing tests, linting errors, build failures).

What you want: Fix the code issues without modifying the workflow files themselves.

Recommended prompts:

• “fix the code issues found by the failing workflows”
• “address the linting errors reported in the GitHub Actions checks”
• “fix the test failures in the CI pipeline”
• “resolve the build errors shown in the workflow logs”

Example: If your R package has failing tests detected by usethis::use_github_action("check-
standard"), you want Copilot to fix the test failures in your R code, not modify the
workflow YAML file.

Why this matters: These prompts make it clear that you want code changes, not workflow
changes. This helps prevent the agent from unnecessarily modifying your carefully-configured
CI/CD pipeline.

18.5.6.2 Scenario 2: Issues with Workflow Files Themselves

When to use: The workflow configuration itself has problems (e.g., syntax errors in YAML,
incorrect job definitions, outdated actions).

What you want: Fix the workflow files, but with extreme caution due to security
implications.

Recommended prompts:

• “fix the syntax error in the GitHub Actions workflow file at line X”
• “update the workflow to use the latest version of action Y”
• “correct the job configuration in .github/workflows/check-standard.yaml”

Important considerations:

151

18 Working with AI

Exclamation-Triangle Warning

Security Warning
Workflow files have access to repository secrets and can execute arbitrary code. Before
accepting any changes to workflow files:

1. Review every line of the proposed changes
2. Verify the changes only address the specific issue
3. Check that no new secret access or command execution has been added
4. Test in a safe environment if possible

See Section 18.5.8 for more details on workflow file security.

When to do it yourself: Workflow syntax errors and configuration issues are often faster
to fix manually than with Copilot, especially if you’re familiar with GitHub Actions. See
Section 18.5.12 for more guidance.

18.5.6.3 Scenario 3: Uncertain Which Scenario Applies

When to use: You’re not sure whether the failure is due to code issues or workflow
configuration problems.

Recommended approach:

1. First, examine the workflow logs:

• Look at the error messages in the GitHub Actions tab
• Identify whether the error is in your code or the workflow itself
• Common code issues: test failures, linting errors, compilation errors
• Common workflow issues: YAML syntax errors, missing actions, permission

errors

2. Use a diagnostic prompt:

• “examine the failing workflow logs and identify whether the issue is in the code
or the workflow configuration”

• “diagnose the root cause of the workflow failure”

3. Then use the appropriate scenario above: Once you understand the issue, use
the specific prompts from Scenario 1 or 2.

Example workflow:

1. Prompt: "examine the failing workflow logs and identify the issue"
2. Copilot responds: "The workflow is failing because of linting errors

in src/analysis.R"
3. Prompt: "fix the linting errors in src/analysis.R"

18.5.6.4 Additional Resources

• See Chapter 7 for setting up GitHub Actions workflows
• See Section 18.5.8 and Section 18.5.7 for security considerations with workflow files

152

18 Working with AI

• See Section 18.5.12 for guidance on when to use Copilot vs. fixing issues yourself
• See the GitHub Actions documentation15 for workflow syntax and troubleshooting

18.5.7 Benefits and Hazards

Coding agents are powerful programs that can work autonomously. They create pull
requests that propose changes to the code in our repositories, potentially including their
own configuration files and our automated workflows. They can work powerfully on our
behalf, but they require careful oversight and control to ensure they serve our interests and
that we understand the consequences of their actions.

Coding agents offer several advantages:

• Built-in transparency: Coding agents create a clear record of their role in your
work through commit history and code suggestions

• Context-aware suggestions: Coding agents understand your codebase and can
make contextually relevant suggestions

• Integration with version control: Using coding agents within GitHub ensures
that AI-assisted changes are tracked alongside all other code changes

• Interactive workflow: Coding agents’ interactive nature encourages you to review
and modify suggestions rather than blindly accepting them

• Accelerated development: Coding agents can help you write boilerplate code,
refactor existing code, and implement common patterns more quickly

• Learning opportunities: Coding agents can suggest approaches or techniques you
may not have considered, helping you expand your coding knowledge

However, coding agents also come with significant hazards:

• Over-reliance: Depending too heavily on coding agents can atrophy your coding
skills and understanding

• Subtle bugs: AI-generated code may contain logic errors that are not immediately
obvious

• Security vulnerabilities: Coding agents may introduce insecure patterns or fail to
follow security best practices

• Inappropriate solutions: AI may suggest solutions that work but are not optimal
for your specific research context or constraints

• Hidden biases: Coding agents may perpetuate coding patterns or approaches that
reflect biases in their training data

• False confidence: Well-formatted, professional-looking code from AI can mask
underlying problems and reduce critical review

• Workflow manipulation risks: Coding agents that modify CI/CD workflows
(.github/workflows/*.yml) or setup configurations can inadvertently or maliciously
compromise repository security, expose secrets, or execute harmful commands

15https://docs.github.com/en/actions

153

https://docs.github.com/en/actions

18 Working with AI

18.5.7.1 Further reading/viewing

• I Robot (Asimov 1950)
• Dune (Herbert 1965)
• “2001: A Space Odyssey” (1968)
• “Terminator 3: Rise of the Machines” (2003)
• “The Matrix” (1999)
• “Blade Runner” (1982)
• “WarGames” (1983)
• Battlestar Galactica (2004) (“Battlestar Galactica” 2004)
• Ender’s Game (Card 1985)
• “The Humans are Dead” (Flight of the Conchords 2007)

Figure 18.1: Agents16

18.5.8 Best Practices for Safe and Successful Use

To work with coding agents safely and successfully:

1. Maintain active supervision: Never assume AI-generated code is correct. Review
every line critically.

2. Understand before accepting: If you don’t understand what the code does, don’t
use it. Take time to learn or ask a colleague.

3. Test thoroughly: AI-generated code must be tested as rigorously as code you write
yourself. Don’t skip testing because “the AI wrote it.”

4. Start small: Begin with small, well-defined tasks to build confidence and under-
standing of the agent’s capabilities and limitations.

5. Verify logic and assumptions: Check that the AI hasn’t made incorrect assump-
tions about your data, requirements, or scientific context.

6. Review for security: Explicitly check for security issues, especially when handling
sensitive data or user input.

7. Iterate and refine: Use coding agents as a starting point, not an endpoint. Refine
and improve the generated code.

154

18 Working with AI

8. Maintain coding practice: Regularly write code yourself to maintain and develop
your skills. Don’t let the agent do everything.

Exclamation-Triangle Critical: Exercise Extreme Caution with Workflow Files

Be especially careful when allowing coding agents to edit GitHub Actions workflows
or CI/CD configurations. These files control automated processes that can:

• Access secrets and credentials
• Deploy code to production
• Execute arbitrary commands in your repository

Never allow a coding agent to edit workflow files (especially
.github/workflows/*.yml or copilot-setup-steps.yml) without thorough
manual review. Before approving any workflow run, always check if the workflow files
themselves have been modified. Malicious or erroneous changes to workflows can
compromise your entire repository and its secrets.

When using coding agents, work interactively with the AI suggestions: review, modify, and
test them rather than accepting them wholesale. This interactive approach helps ensure
code quality and deepens your understanding of the code.

Remember: AI tools are assistants, not replacements for your expertise and judgment. The
quality and correctness of your work remains your responsibility.

18.5.9 Firewall and Network Configuration

Coding agents require specific network access to function properly. If a coding agent is
running behind a corporate firewall or on a restricted network, you may need to configure
allowlists to enable coding agent functionality.

18.5.9.1 Built-in Agent Firewall

Coding agents run in a GitHub Actions environment with a built-in firewall that limits
internet access by default. This firewall helps protect against:

• Data exfiltration
• Accidental leaks of sensitive information
• Execution of malicious instructions

By default, the agent’s firewall allows access to:

• Common OS package repositories (Debian, Ubuntu, Red Hat, etc.)
• Popular container registries (Docker Hub, Azure Container Registry, AWS ECR, etc.)
• Language-specific package registries (npm, PyPI, Maven, RubyGems, etc.)
• Common certificate authorities for SSL validation

For the complete list of allowed hosts, see the Copilot allowlist reference17.

17https://docs.github.com/en/copilot/reference/copilot-allowlist-reference

155

https://docs.github.com/en/copilot/reference/copilot-allowlist-reference

18 Working with AI

18.5.9.2 Customizing Agent Firewall Settings

In your repository’s “Coding agent” settings page, you can:

• Add custom hosts to the allowlist (for internal dependencies or additional registries)
• Opt out of the default recommended allowlist for stricter security
• Disable the firewall entirely (not recommended)

If a coding agent’s request is blocked by the firewall, a warning will be added to the pull
request or comment, detailing the blocked address and the command that triggered it.

For more information, see Customizing or disabling the firewall for GitHub Copilot coding
agent18.

18.5.9.3 Recommended URLs for Data Science Repositories

For data science and R-focused repositories, we recommend adding the following URLs
to your Copilot allowlist. These sites are safe, reputable sources of documentation and
packages that coding agents may need to access:

R Package Documentation and Ecosystems:

• tidyverse.org - {tidyverse} package documentation and learning resources
• r-lib.org - Core R infrastructure packages ({devtools}, {testthat}, {usethis},

etc.)
• ggplot2.tidyverse.org - {ggplot2} visualization package
• dplyr.tidyverse.org - {dplyr} data manipulation package
• tidyr.tidyverse.org - {tidyr} data tidying package
• purrr.tidyverse.org - {purrr} functional programming package
• readr.tidyverse.org - {readr} data reading package
• stringr.tidyverse.org - {stringr} string manipulation package
• forcats.tidyverse.org - {forcats} categorical data package

R Package Repositories:

• cran.r-project.org - The Comprehensive R Archive Network
• cloud.r-project.org - CRAN mirror (cloud-based)
• docs.ropensci.org - rOpenSci package documentation (e.g., {targets})
• rdatatable.gitlab.io - {data.table} package documentation
• rstudio.github.io - RStudio-maintained packages (e.g., {renv})

Code Style and Quality Tools:

• styler.r-lib.org - {styler} code formatting package
• lintr.r-lib.org - {lintr} code linting package
• roxygen2.r-lib.org - {roxygen2} documentation package
• style.tidyverse.org - Tidyverse style guide

General Documentation and Reference:

• en.wikipedia.org - General reference and technical documentation

18https://docs.github.com/en/copilot/how-tos/use-copilot-agents/coding-agent/customize-the-agent-
firewall

156

https://docs.github.com/en/copilot/how-tos/use-copilot-agents/coding-agent/customize-the-agent-firewall
https://docs.github.com/en/copilot/how-tos/use-copilot-agents/coding-agent/customize-the-agent-firewall

18 Working with AI

• r-project.org - Official R project website
• quarto.org - Quarto publishing system documentation
• pandoc.org - Pandoc document converter documentation

GitHub Organizations (for package repositories):

• github.com/tidyverse/* - Tidyverse package source code
• github.com/r-lib/* - R-lib package source code
• github.com/rstudio/* - RStudio package source code
• github.com/ropensci/* - rOpenSci package source code

LIGHTBULB When to Add These URLs

Add these URLs to your repository’s allowlist if:

• Coding agents report blocked access to these sites
• You’re working on R or data science projects that use these packages
• You want agents to access current documentation during code generation

You can add URLs selectively based on your project’s specific dependencies rather
than adding all URLs at once.

INFO Safety of These URLs

All URLs listed here are:

• Maintained by reputable organizations (Tidyverse, RStudio/Posit, R Core Team,
rOpenSci)

• Widely used in the R community
• Focused on documentation and package distribution
• Safe for coding agents to access

These sites do not host user-generated content or allow arbitrary code execution,
making them appropriate for inclusion in your allowlist.

18.5.10 Configuring GitHub Copilot Settings

GitHub Copilot offers numerous configuration options that control how the AI assistant
integrates into your development workflow. This section explains the key settings visible in
your GitHub account preferences and provides guidance on which options to enable based
on your use case.

18.5.10.1 Model Selection Options

GitHub Copilot provides access to multiple AI models, each with different capabilities and
performance characteristics. The available models as of early 2026 include:

Anthropic Claude Models:

• Claude Opus 4.1: Most capable model for complex reasoning and analysis

157

18 Working with AI

– Pros: Excellent at understanding nuanced requirements, handling complex
codebases, superior code quality

– Cons: Slower response times, may be overkill for simple tasks, limited availability
(select option required)

– When to use: Complex refactoring, architectural decisions, thorough code reviews

• Claude Opus 4.5: Latest version with enhanced capabilities

– Pros: State-of-the-art performance, improved reasoning over 4.1
– Cons: Similar trade-offs to Opus 4.1, requires selection
– When to use: Most demanding tasks requiring cutting-edge capabilities

• Claude Sonnet 4: Balanced model optimizing capability and speed

– Pros: Fast responses, strong performance, good default choice
– Cons: Slightly less capable than Opus models for very complex tasks
– When to use: General development work, most coding tasks

• Claude Sonnet 4.5: Enhanced version of Sonnet

– Pros: Improved over Sonnet 4 while maintaining speed
– Cons: Still not as powerful as Opus for extremely complex scenarios
– When to use: Most daily development tasks

• Claude Haiku 4.5: Fast, efficient model for simpler tasks

– Pros: Very fast responses, cost-effective, good for quick questions
– Cons: Less capable for complex reasoning or large codebases
– When to use: Simple completions, quick questions, repetitive tasks

OpenAI GPT Models:

• GPT-5.2-Codex: Specialized for code generation

– Pros: Strong code completion, good at common patterns
– Cons: May hallucinate package names or APIs
– When to use: Code completion, common coding patterns

• GPT-5: Latest general-purpose model

– Pros: Broad knowledge, good general performance
– Cons: Not specifically optimized for code
– When to use: Mixed tasks involving code and documentation

• GPT-5-Codex (various versions including Mini and Max):

– Pros: Specialized variants for different use cases
– Cons: Fragmented options can be confusing
– When to use: Specific scenarios where variant optimizations matter

Google Gemini Models:

• Gemini 2.5 Pro: High-capability model

– Pros: Strong multimodal capabilities, good at understanding context
– Cons: Less proven in coding scenarios than Claude or GPT
– When to use: Tasks involving images or complex context

• Gemini 3 Pro/Flash (Preview): Latest generation

158

18 Working with AI

– Pros: Cutting-edge capabilities, flash variant offers speed
– Cons: Preview status means less stable, limited track record
– When to use: Experimental workflows, evaluation of new capabilities

Lab Recommendation: For most lab work, enable Claude Sonnet 4.5 as your default
model. It provides excellent balance of capability and speed. Consider switching to Claude
Opus 4.5 for complex architectural decisions or difficult debugging sessions. Keep Claude
Haiku 4.5 enabled for quick inline completions.

18.5.10.2 Feature Settings

These settings control where and how Copilot integrates into your development environ-
ment:

Editor preview features:

• What it does: Enables previews of experimental features in your editor
• Pros: Access to latest capabilities before general release
• Cons: May have bugs or unstable behavior
• Recommendation: Enable if you’re comfortable troubleshooting issues and want

cutting-edge features

Copilot Chat in GitHub.com:

• What it does: Enables Copilot chat interface on GitHub.com
• Pros: Quick access to Copilot without opening an editor, useful for reviewing PRs
• Cons: Only available with paid license
• Recommendation: Enable (included in GitHub Copilot subscription)

Copilot CLI:

• What it does: GitHub Copilot for assistance in terminal
• Pros: AI help for command-line operations, shell commands, and git operations
• Cons: Requires separate installation and setup
• Recommendation: Enable and install via gh extension install github/gh-

copilot

Copilot in GitHub Desktop:

• What it does: Enables Copilot in GitHub Desktop app
• Pros: AI assistance in GUI git client
• Cons: Limited compared to editor integration
• Recommendation: Enable if you use GitHub Desktop

Copilot Chat in the IDE:

• What it does: Enables chat interface in your code editor
• Pros: Context-aware help, refactoring assistance, code explanation
• Cons: Can be distracting if overused
• Recommendation: Enable (essential feature)

Copilot Chat in GitHub Mobile:

• What it does: Enables Copilot chat in mobile app

159

18 Working with AI

• Pros: Quick access on mobile devices
• Cons: Limited by mobile interface
• Recommendation: Enable for convenience

Copilot can search the web:

• What it does: Allows Copilot to search internet for up-to-date information
• Pros: Access to current documentation, recent library changes, latest best practices
• Cons: May introduce latency, results depend on search quality
• Recommendation: Enable for access to current information

18.5.10.3 Advanced Settings

Dashboard Entry Point:

• What it does: Allows instant chatting when landing on GitHub.com
• Pros: Quick access to Copilot without navigating menus
• Cons: None significant
• Recommendation: Enable for convenience

Copilot code review:

• What it does: Use Copilot to review your code and generate pull request summaries
• Pros: Automated code review suggestions, PR summary generation, catches common

issues
• Cons: May generate false positives, shouldn’t replace human review
• Recommendation: Enable (major productivity boost)

Automatic Copilot code review:

• What it does: Automatically reviews all pull requests you create
• Pros: Catches issues early without manual triggering
• Cons: May be noisy on simple PRs, uses API quota
• Recommendation: Disable initially; enable only after you’re comfortable with code

review quality

Copilot coding agent:

• What it does: Delegate tasks to Copilot coding agent in repositories where it is enabled
• Pros: Autonomous multi-file edits, can execute complex refactoring, runs tests and

fixes issues
• Cons: Requires careful oversight, can make unwanted changes if instructions unclear
• Recommendation: Enable (see Section 18.5.8 for safe usage guidelines)

Copilot Memory (Preview):

• What it does: Remember repository context across Copilot agent interactions
• Pros: Better context awareness, learns repository patterns and conventions
• Cons: Preview feature governed by pre-release terms, potential privacy implications
• Recommendation: Enable to help Copilot learn your codebase patterns

MCP servers in Copilot:

• What it does: Connect MCP servers to Copilot in all editors and Coding Agent

160

18 Working with AI

• Pros: Extend Copilot with custom tools and integrations
• Cons: Requires MCP server setup and maintenance
• Recommendation: Enable if you have MCP servers configured; otherwise this setting

has no effect

Copilot-generated commit messages:

• What it does: Allow Copilot to suggest commit messages when you make changes
• Pros: Saves time, generates descriptive messages based on code changes
• Cons: May miss important context, still requires review
• Recommendation: Enable but always review and edit suggested messages

Copilot Spaces:

• What it does: View and create Copilot Spaces (collaborative AI environments)
• Pros: Share AI context with team members
• Cons: Additional complexity for individual work
• Recommendation: Enable for team collaboration features

Copilot Spaces Individual Access:

• What it does: Create individually owned Copilot Spaces
• Pros: Personal AI workspaces for complex projects
• Cons: May fragment your workflow
• Recommendation: Enable for flexibility

Copilot Spaces Individual Sharing:

• What it does: Share individually owned Copilot Spaces
• Pros: Collaborate while maintaining ownership
• Cons: None significant
• Recommendation: Enable for sharing capability

18.5.10.4 Summary of Recommended Settings

For lab members, we recommend the following configuration:

Enable these features:

• All Copilot Chat options (GitHub.com, CLI, IDE, Mobile)
• Web search capability
• Dashboard Entry Point
• Copilot code review (but not automatic review initially)
• Copilot coding agent
• Copilot Memory
• MCP servers (if configured)
• Copilot-generated commit messages
• All Copilot Spaces options

Model selection:

• Default: Claude Sonnet 4.5
• Complex tasks: Claude Opus 4.5
• Quick completions: Claude Haiku 4.5

161

18 Working with AI

Enable with caution:

• Editor preview features (only if comfortable with potential instability)
• Automatic Copilot code review (wait until familiar with review quality)

Following these guidelines will help establish an effective Copilot configuration. The key is
to enable features that add value to your workflow while maintaining awareness that AI
assistance requires validation (see Section 18.5.8).

18.5.11 Configuring the Agent Environment

The .github/workflows/copilot-setup-steps.yml file allows you to customize the de-
velopment environment in which the GitHub Copilot coding agent operates. This file
preinstalls tools and dependencies so that Copilot can build, test, and lint your code more
reliably.

18.5.11.1 Why Configure the Environment?

While Copilot can discover and install dependencies through trial and error, this can be
slow and unreliable. Additionally, Copilot may be unable to access private dependencies.
Preconfiguring the environment ensures:

• Faster agent startup and execution
• More reliable builds and tests
• Access to private or authenticated dependencies
• Consistent development environment across all agent sessions

18.5.11.2 File Location and Structure

The workflow file must be located at .github/workflows/copilot-setup-steps.yml in
your repository’s default branch. It follows GitHub Actions workflow syntax but must
contain a single job named copilot-setup-steps.

18.5.11.3 Basic Configuration Example

See Appendix: Copilot Setup Steps File for the configuration used in this repository
(adapted for R and Quarto projects).

18.5.11.4 Using actions/checkout

The actions/checkout19 action is used to check out your repository code so that the
workflow can access it. While Copilot will automatically check out your repository if you
don’t include this step, explicitly including it is necessary when your setup steps need
to access repository files.

Why explicitly include checkout?

Many dependency installation steps require access to repository files:

19https://github.com/actions/checkout

162

https://github.com/actions/checkout

18 Working with AI

• r-lib/actions/setup-renv@v2 needs renv.lock to install R package dependencies
• r-lib/actions/setup-r-dependencies@v2 needs DESCRIPTION to install R package

dependencies
• npm ci needs package-lock.json to install Node.js dependencies
• pip install -r requirements.txt needs the requirements file

Without an explicit checkout step, these dependency installation commands will fail because
the necessary files won’t be available yet.

Basic checkout:

- name: Checkout code
uses: actions/checkout@v4

Important: The Copilot coding agent overrides any fetch-depth value you set in the
checkout step. According to GitHub’s official documentation20, this override happens “to
allow the agent to rollback commits upon request, while mitigating security risks.” The agent
dynamically determines the appropriate fetch depth based on the pull request context.

While you cannot control the fetch depth used by Copilot, the agent still has access to
sufficient git history to perform its work effectively, including comparing changes and
understanding the context of your pull request.

18.5.11.5 Configurable Options

You can customize only these specific settings in the copilot-setup-steps job:

• steps: Setup commands and actions to run
• permissions: Access permissions (typically contents: read)
• runs-on: Runner type (Ubuntu x64 Linux only)
• services: Database or service containers
• snapshot: Save environment state
• timeout-minutes: Maximum 59 minutes

All other workflow settings are ignored by Copilot.

18.5.11.6 Common Setup Tasks

For Node.js/TypeScript projects:

- name: Set up Node.js
uses: actions/setup-node@v4
with:

node-version: "20"
cache: "npm"

- name: Install dependencies
run: npm ci

20https://docs.github.com/en/copilot/how-tos/use-copilot-agents/coding-agent/customize-the-agent-
environment

163

https://docs.github.com/en/copilot/how-tos/use-copilot-agents/coding-agent/customize-the-agent-environment
https://docs.github.com/en/copilot/how-tos/use-copilot-agents/coding-agent/customize-the-agent-environment

18 Working with AI

For Python projects:

- name: Set up Python
uses: actions/setup-python@v5
with:

python-version: "3.11"

- name: Install dependencies
run: pip install -r requirements.txt

For R projects:

- name: Set up R
uses: r-lib/actions/setup-r@v2
with:

r-version: 'release'

- name: Install R dependencies
uses: r-lib/actions/setup-renv@v2

18.5.11.7 Environment Variables and Secrets

To set environment variables for Copilot:

1. Navigate to your repository’s Settings
2. Go to Environments
3. Select or create the copilot environment
4. Add environment variables or secrets as needed

Use secrets for sensitive values like API keys or passwords.

18.5.11.8 Testing Your Configuration

The workflow runs automatically when you modify copilot-setup-steps.yml, allowing
you to validate changes in pull requests. You can also manually trigger the workflow from
the repository’s Actions tab.

Setup logs appear in the agent session logs when Copilot starts working. If a step fails,
Copilot will skip remaining steps and begin working with the current environment state.

18.5.11.9 Advanced Configuration

Larger runners: For projects requiring more resources, you can use larger GitHub-hosted
runners:

jobs:
copilot-setup-steps:

runs-on: ubuntu-4-core

164

18 Working with AI

Self-hosted runners (ARC): For access to internal resources or private registries, use
Actions Runner Controller (ARC) self-hosted runners:

jobs:
copilot-setup-steps:

runs-on: arc-scale-set-name

Note: When using self-hosted runners, you must disable Copilot’s integrated firewall in
repository settings and configure appropriate network security controls.

Git Large File Storage (LFS): If your repository uses Git LFS:

- uses: actions/checkout@v4
with:

lfs: true

18.5.11.10 Further Reading

For complete details, see Customizing the development environment for GitHub Copilot
coding agent21.

18.5.12 When to use a coding agent

Coding agent sessions are currently22 considered “premium requests”, which are
limited resources; see https://github.com/features/copilot/plans for details. So,
use coding agents sparingly. Use them for complex changes that would be dif-
ficult or time-consuming for you to complete by hand. Coding agents also
take time to get configured for work, every time you make a request. See
https://docs.github.com/en/copilot/how-tos/use-copilot-agents/coding-agent/customize-
the-agent-environment#preinstalling-tools-or-dependencies-in-copilots-environment for
ways to reduce that startup time, but it will never be 0. If you can complete the task faster
than the coding agent can, you should probably do it yourself. For example, when you have
errors in the spell-check or lint workflows, you can often fix them faster than Copilot can.
Similarly, when reviewing Copilot’s PRs, you can often make direct changes to the branch
faster than you could write clear review comments and get Copilot to address them.

Also, the less we practice, the weaker our skills get, and the harder it is for us to supervise
the agents and make sure they are actually doing what we want them to do, the way we
want them to do it. You should exercise your own coding skills regularly, just like you
would for any other skill you want to maintain.

18.5.13 Editing with .docx files

GitHub Copilot coding agents can read Microsoft Word (.docx) files, including tracked
changes and comments. This enables a hybrid editing workflow where:

1. Lab members can export Quarto content to Word format for review
21https://docs.github.com/en/copilot/how-tos/use-copilot-agents/coding-agent/customize-the-agent-

environment
222026-01-10

165

https://github.com/features/copilot/plans
https://docs.github.com/en/copilot/how-tos/use-copilot-agents/coding-agent/customize-the-agent-environment#preinstalling-tools-or-dependencies-in-copilots-environment
https://docs.github.com/en/copilot/how-tos/use-copilot-agents/coding-agent/customize-the-agent-environment#preinstalling-tools-or-dependencies-in-copilots-environment
https://docs.github.com/en/copilot/how-tos/use-copilot-agents/coding-agent/customize-the-agent-environment
https://docs.github.com/en/copilot/how-tos/use-copilot-agents/coding-agent/customize-the-agent-environment

18 Working with AI

2. Reviewers can make edits, add tracked changes, and insert comments in Word
3. Coding agents can read the .docx file and translate the edits back to Quarto format

When using this workflow, make sure to explicitly instruct the coding agent to:

• Examine and apply all tracked changes in the .docx file
• Read and address all comments in the .docx file
• Translate edits from Word formatting to appropriate Quarto/markdown syntax

This approach makes it easier for collaborators who are more comfortable with Word to
contribute to the lab manual while maintaining the source files in Quarto format.

18.5.13.1 Known Issue: “Document 1” Warning in Word

When opening DOCX files generated by Quarto (including this lab manual), Microsoft
Word may display a warning message and open the file with the title “Document 1” instead
of the actual filename. Word may also require you to save the file before you can add
comments or track changes.

This is a known limitation with how Quarto generates DOCX files. The issue is being
tracked in the Quarto project:

• Quarto CLI Issue #635723

• Quarto Discussion #654424

• Quarto CLI Issue #1058725

Workaround: If you are the author generating the DOCX file from Quarto, follow these
steps before sharing with collaborators:

1. Open the generated DOCX file in Microsoft Word
2. Immediately save the file (File → Save, or Ctrl+S/Cmd+S)
3. Close and re-open the file to verify it no longer shows “Document 1”
4. Share this saved version with collaborators

This one-time step ensures that when collaborators open the file, they won’t see the
“Document 1” warning and can immediately add comments and track changes without
issues.

18.5.14 Copilot Instructions for this Repository

The .github/copilot-instructions.md file in this repository contains specific instruc-
tions and guidelines for GitHub Copilot coding agents when working with the lab manual.
This file helps ensure that AI-generated contributions follow the lab’s formatting standards,
coding conventions, and documentation practices.

The copilot instructions file specifies:

• Markdown and Quarto formatting rules (e.g., blank lines before lists, line breaks in
prose)

• R code style guidelines (e.g., using native pipe |>, following tidyverse style)
23https://github.com/quarto-dev/quarto-cli/issues/6357
24https://github.com/orgs/quarto-dev/discussions/6544
25https://github.com/quarto-dev/quarto-cli/issues/10587

166

https://github.com/quarto-dev/quarto-cli/issues/6357
https://github.com/orgs/quarto-dev/discussions/6544
https://github.com/quarto-dev/quarto-cli/issues/10587

18 Working with AI

• File organization patterns (e.g., using Quarto includes for modular content)
• How to work with DOCX files for hybrid editing workflows
• Repository-specific best practices

By having these instructions in .github/copilot-instructions.md, we ensure that coding
agents produce consistent, high-quality contributions that align with the lab’s established
practices. This reduces the review burden and helps maintain consistency across all
contributions to the lab manual, whether made by humans or AI assistants.

See Appendix: Copilot Instructions File for the complete file.

18.5.15 Using Copilot Review Before Human Review

Before requesting review from other humans, always have Copilot review your pull
request first—even if Copilot created the PR itself. AI review provides fast, thorough
feedback that helps catch issues before involving human reviewers, saving everyone time
and improving code quality.

Why review with Copilot first:

• AI has more bandwidth: Copilot can review code immediately without competing
priorities

• Catch common issues early: Copilot excels at identifying bugs, logic errors,
security vulnerabilities, and style inconsistencies

• Improve human review quality: When humans review cleaner code, they can
focus on higher-level concerns like design and architecture rather than basic issues

• Learn from feedback: Even experienced developers benefit from Copilot’s perspec-
tive on best practices and potential improvements

• Growing capabilities: AI review capabilities continue to improve over time, making
this investment increasingly valuable

Copilot review workflow:

1. Assign Copilot as a reviewer: On your pull request page, assign Copilot to review
the PR the same way you would assign any other reviewer. Click “Reviewers” in the
right sidebar and select Copilot from the list.

2. Review Copilot’s comments: Once Copilot completes its review, carefully examine
each comment. For each comment, decide whether you agree with the suggestion:

• If the comment is correct: Address it by making code changes yourself or
ask Copilot to apply the fix using GitHub’s suggestion features

• If the comment is incorrect or not applicable: Dismiss the comment with
an explanation for why it doesn’t apply

• If you’re uncertain: Seek a second opinion from a human reviewer or do
additional research

3. Request another Copilot review: After addressing or dismissing all comments,
request another review from Copilot. This creates an iterative improvement process.

4. Iterate until satisfied: Repeat the review-and-address cycle until Copilot stops
providing valuable suggestions. This typically takes 1-3 iterations depending on the
complexity of the changes.

167

18 Working with AI

5. Request human review: Only after you’ve addressed Copilot’s feedback should
you request review from human team members. At this point, the code should be in
better shape, allowing human reviewers to focus on higher-level concerns.

Important considerations:

• Copilot isn’t perfect: AI review can produce false positives or miss important
issues. Always apply your own judgment when evaluating Copilot’s suggestions.

• Don’t blindly accept all suggestions: Some of Copilot’s recommendations may
not fit your specific context or requirements. It’s perfectly appropriate to dismiss
comments that don’t apply.

• Human review remains essential: Copilot review supplements but does not
replace human code review. Humans bring domain knowledge, understanding of
business requirements, and judgment about trade-offs that AI cannot replicate.

• Document dismissals: When dismissing Copilot comments, briefly explain why.
This helps human reviewers understand your reasoning and can serve as documentation
for future reference.

For pull request authors:

Even if you’re highly experienced, treating Copilot review as a required pre-review step
helps maintain code quality and makes the best use of everyone’s time. The few minutes
spent on Copilot review often save hours of back-and-forth with human reviewers.

For human reviewers:

When you receive a PR for review, check whether the author has completed the Copilot
review process. If Copilot hasn’t reviewed the PR yet, consider asking the author to
complete that step first before you invest time in review. This ensures you’re reviewing
code that has already been through initial automated quality checks.

18.5.16 Reviewing a Copilot PR You Didn’t Create

When reviewing a pull request where someone else prompted Copilot to make changes,
follow these guidelines to avoid confusion and ensure smooth collaboration:

Understanding PR roles:

Different people may play different roles in the PR lifecycle:

• Issue creator: Reports a bug, suggests a feature, or requests other improvements.
In projects with external users, issue creators often cannot assign issues to developers
and are therefore distinct from the PR prompter

• PR prompter: Assigns a developer (human or AI) to start working on a PR, often
by assigning an issue to Copilot. The PR prompter is sometimes the same person as
the issue creator, but often is a project maintainer who reviews and triages external
issue reports

• PR author(s): Makes commits to the PR branch (when Copilot creates commits,
both Copilot and the prompter are co-authors)

• PR manager: Supervises and guides the PR authors, assigns reviewers, and controls
the PR workflow. Typically the PR prompter becomes the PR manager, but can
hand off this role to someone else

• PR reviewer(s): Reviews the PR and provides feedback. The PR manager often
also serves as the lead reviewer

168

18 Working with AI

• PR assignee(s): Listed in the “Assignees” field on GitHub to indicate who is
responsible for the PR. Use this field to clarify current ownership and track who
should be working on addressing feedback

The scenario:

• One team member (the “PR prompter”) assigned Copilot to work on an issue or
explicitly prompted Copilot to start working

• The prompter may or may not be the same person who originally created the issue

– In projects with a user base, users often submit issues (bug reports, feature
requests)

– A project maintainer then steps in, adds their perspective, and assigns the issue
to Copilot

– In this case, the maintainer who assigned Copilot is the prompter, not the original
issue creator

• Copilot created the PR with the prompter as co-author
• The prompter (now acting as PR manager) requested your review
• Copilot may have also automatically reviewed the PR

As a non-manager reviewer, your role is to provide feedback, not to directly
initiate more work by Copilot. The PR manager should remain in control of when and
how Copilot makes additional changes.

Recommended review workflow:

1. Use “Comment” or “Request changes” based on the severity of issues:

• Use “Comment” for suggestions, questions, or minor issues that don’t block
merging

• Use “Request changes” for significant issues that must be addressed before
merging

• Both options allow you to provide feedback without directly triggering Copilot

2. Don’t ask Copilot to make changes directly:

• Avoid using features that would trigger Copilot to start working immediately
• Let the PR manager decide whether to ask Copilot to address your comments or

make changes themselves

3. Write clear, actionable comments:

• Explain what needs to change and why
• Suggest specific solutions when appropriate
• The PR manager will decide how to address your feedback

For PR managers:

After receiving reviews from other team members:

1. Review all comments carefully:

• Decide which comments you agree with
• Dismiss or respond to comments you don’t entirely agree with
• This ensures Copilot only addresses feedback you’ve validated

2. Choose how to address valid feedback:

169

18 Working with AI

• Option A: Make the changes yourself (faster for simple fixes)
• Option B: Ask Copilot to address the feedback (better for complex changes)
• Option C: Add your own review summarizing which comments Copilot should

address, then ask Copilot to respond to the open comment threads

3. Maintain clear communication:

• Let reviewers know how you plan to address their feedback
• Mark conversations as resolved after addressing them
• Request re-review from humans after Copilot makes significant changes
• Update the PR’s “Assignees” field to reflect who is currently responsible for the

PR

Transferring the PR manager role:

The original PR manager can hand over a PR to another person, who then becomes the new
PR manager with control over Copilot’s work on that PR. This might be useful when:

• The original PR manager is unavailable or on leave
• Someone with different expertise needs to guide the remaining work
• Responsibilities are being redistributed within the team

To transfer the PR manager role:

1. The original PR manager should clearly communicate the handover to all reviewers
2. The new PR manager should review the PR’s history and any open feedback
3. The new PR manager should take over responding to Copilot and managing future

iterations
4. The team should update the PR’s “Assignees” field and comments or description to

reflect the current PR manager

This workflow ensures the PR manager maintains control over the development process while
benefiting from collaborative human review and Copilot’s implementation capabilities.

170

19 Checklists

Adapted by UCD-SeRG team from original by Jade Benjamin-Chung1

19.1 Pre-analysis plan checklist

• Brief background on the study (a condensed version of the introduction section of the
paper)

• Hypotheses / objectives
• Study design
• Description of data
• Definition of outcomes
• Definition of interventions / exposures
• Definition of covariates
• Statistical power calculation
• Statistical model description
• Covariate selection / screening
• Standard error estimation method
• Missing data analysis
• Assessment of effect modification / subgroup analyses
• Sensitivity analyses
• Negative control analyses

19.2 Code checklist

• Does the script run without errors?
• Is code self-contained within repo and/or associated Box folder?
• Is all commented out code / remarks removed?
• Does the header accurately describe the process completed in the script?
• Is the script pushed to its github repository?
• Does the code adhere to the coding style guide2?
• Are all warnings ignorable? Should any warnings be intentionally suppressed or

addressed?

19.3 Manuscript checklist

This is adapted in part from How to tackle the reproducibility crisis in ten steps (Baker
2019).

1https://jadebc.github.io/lab-manual/checklists.html
2https://ucd-serg.github.io/lab-manual/coding-style.html

171

https://jadebc.github.io/lab-manual/checklists.html
https://ucd-serg.github.io/lab-manual/coding-style.html

19 Checklists

• Have you completed the relevant reporting checklist, if applicable? (See EQUATOR
Network (“EQUATOR Network: Enhancing the QUAlity and Transparency of Health
Research,” n.d.) for a collection of checklists)

• Are the study results within the manuscript replicable (i.e., if you rerun the code in
the study’s repository, the tables and figures will be exactly replicated?)

• Is a target journal selected?
• Is the title declarative, in other words, does it state the object/findings rather than

suggest them?
• Is the word count of the manuscript close to the target journal’s allowance?
• Does the manuscript adhere to the formatting guide of the target journal?
• Does the manuscript use a consistent voice (passive or active – usually active is

preferred … pun intended)?
• Is each figure and table (including supplementary material) referenced in the main

text?
• Is there a caption for each figure and table (including supplementary material)?
• Are tables/figures and supplementary material numbered in accordance with their

appearance in the main text?
• Does the text use past tense if it is reporting research findings or future tense if it is

a study protocol?
• Does the text avoid subjective wording (e.g., “interesting”, “dramatic”)?
• Does the text use minimal abbreviations, and are all abbreviations defined at first

use?
• Does the text avoid directionless words? (e.g., instead of writing, ‘Precipitation

influences disease risk’, write, ‘Precipitation was associated with increased disease
risk’).

• Does the text avoid making causal claims that are not supported by the study design?
Be careful about the words “effect”, “increase”, and “decrease”, which are often
interpreted as causal.

• Does the text avoid describing results with the word “significant”, which can easily
be confused with statistical significance? (see references on this topic here3)

• Have you drafted author contributions? Do they follow the CRediT: Contributor Roles
Taxonomy (“CRediT: Contributor Roles Taxonomy,” n.d.) for author contributions?

19.4 Figure checklist

• Are the x-axis and y-axis labeled?
• If the figure includes panels, is each panel labeled?
• Are there sufficient numerical / text labels and breaks on the x-axis and y-axis?
• Is the font size appropriate (i.e., large enough to read, not so large that it distracts

from the data presented in the figure?)
• Are the colors used colorblind friendly? See a colorblind-friendly palette here4, a neat

palette generator with colorblind options here5, and an article on why this matters:
The misuse of colour in science communication (Crameri, Shephard, and Heron 2020)

• Are colors/shapes/line types defined in a legend?
• Are the legends and other labels easy to understand with minimal abbreviations?
• If there is overplotting, is transparency used to show overlapping data?

3https://journals.lww.com/epidem/Fulltext/2001/05000/The_Value_of_P.2.aspx
4http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/#a-colorblind-friendly-palette
5https://medialab.github.io/iwanthue/?utm_source=Nature+Briefing&utm_campaign=2c68711076-

briefing-dy-20211006&utm_medium=email&utm_term=0_c9dfd39373-2c68711076-44335685

172

https://journals.lww.com/epidem/Fulltext/2001/05000/The_Value_of_P.2.aspx
http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/#a-colorblind-friendly-palette
https://medialab.github.io/iwanthue/?utm_source=Nature+Briefing&utm_campaign=2c68711076-briefing-dy-20211006&utm_medium=email&utm_term=0_c9dfd39373-2c68711076-44335685
https://medialab.github.io/iwanthue/?utm_source=Nature+Briefing&utm_campaign=2c68711076-briefing-dy-20211006&utm_medium=email&utm_term=0_c9dfd39373-2c68711076-44335685

19 Checklists

• Are 95% confidence intervals or other measures of precision shown, if applicable?

173

20 Resources

Adapted by UCD-SeRG team from original by Jade Benjamin-Chung and Kunal Mishra1

20.1 Resources for R

20.1.1 Books and Comprehensive Guides

• R for Data Science (Wickham, Çetinkaya-Rundel, and Grolemund 2023) - comprehen-
sive introduction to doing data science with R

• R Packages (Wickham and Bryan 2023) - complete guide to R package development
• Awesome R Package Development Tools2 - curated list of tools for R package devel-

opment
• Advanced R (Wickham 2019) - deep dive into R programming and internals
• Mastering Shiny (Wickham 2021) - comprehensive guide to building web applications

with Shiny
• Engineering Production-Grade Shiny Apps (Fay et al. 2021) - best practices for

production Shiny applications
• Happy Git and GitHub for the useR (Bryan 2023) - guide to using Git and GitHub

with R
• Jade’s R-for-epi course3

20.1.2 UC Davis DataLab Workshops and Tutorials

The UC Davis DataLab4 provides extensive workshops and learning materials for data
science:

• Workshop Index5 - comprehensive catalog of all DataLab workshops
• R Basics Workshop6 - foundational R programming for beginners
• Research Toolkits7 - in-depth guides for research tools and methods
• Install Guides8 - setup instructions for data science software

1https://jadebc.github.io/lab-manual/resources.html
2https://indrajeetpatil.github.io/awesome-r-pkgtools/
3https://ucb-epi-r.github.io
4https://github.com/ucdavisdatalab
5https://ucdavisdatalab.github.io/workshop_index/
6https://github.com/ucdavisdatalab/workshop_r_basics
7https://github.com/ucdavisdatalab/research-toolkits
8https://ucdavisdatalab.github.io/install_guides/

174

https://jadebc.github.io/lab-manual/resources.html
https://indrajeetpatil.github.io/awesome-r-pkgtools/
https://ucb-epi-r.github.io
https://github.com/ucdavisdatalab
https://ucdavisdatalab.github.io/workshop_index/
https://github.com/ucdavisdatalab/workshop_r_basics
https://github.com/ucdavisdatalab/research-toolkits
https://ucdavisdatalab.github.io/install_guides/

20 Resources

20.1.3 Cheat Sheets

• dplyr and tidyr cheat sheet9

• ggplot cheat sheet10

• data table cheat sheet11

• RMarkdown cheat sheet12

20.1.4 Style and Best Practices

• Hadley Wickham’s R Style Guide13

20.1.5 Tidy Evaluation Resources

• Tidy Eval in 5 Minutes14 (video)
• Tidy Evaluation15 (e-book)
• Data Frame Columns as Arguments to Dplyr Functions16 (blog)
• Standard Evaluation for *_join17 (stackoverflow)
• Programming with dplyr18 (package vignette)

20.2 Resources for Git & Github

• Happy Git and GitHub for the useR (Bryan 2023) - comprehensive guide to using Git
and GitHub with R

• GitHub Skills: Introduction to GitHub19

• UC Davis DataLab Git Sandbox20 - hands-on Git practice repository

20.3 Resources for Python

• UC Davis DataLab Python Basics Workshop21 - foundational Python programming
• Natural Language Processing with Python22 - text analysis and NLP techniques

9https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
10https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf
11https://s3.amazonaws.com/assets.datacamp.com/blog_assets/datatable_Cheat_Sheet_R.pdf
12https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
13http://adv-r.had.co.nz/Style.html
14https://www.youtube.com/watch?v=nERXS3ssntw
15https://dplyr.tidyverse.org/articles/programming.html
16https://www.brodrigues.co/blog/2016-07-18-data-frame-columns-as-arguments-to-dplyr-functions/
17https://stackoverflow.com/questions/28125816/r-standard-evaluation-for-join-dplyr
18https://dplyr.tidyverse.org/articles/programming.html
19https://github.com/skills/introduction-to-github
20https://github.com/ucdavisdatalab/sandbox_git
21https://github.com/ucdavisdatalab/workshop_python_basics
22https://github.com/ucdavisdatalab/workshop_nlp_with_python

175

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/datatable_Cheat_Sheet_R.pdf
https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
http://adv-r.had.co.nz/Style.html
https://www.youtube.com/watch?v=nERXS3ssntw
https://dplyr.tidyverse.org/articles/programming.html
https://www.brodrigues.co/blog/2016-07-18-data-frame-columns-as-arguments-to-dplyr-functions/
https://stackoverflow.com/questions/28125816/r-standard-evaluation-for-join-dplyr
https://dplyr.tidyverse.org/articles/programming.html
https://github.com/skills/introduction-to-github
https://github.com/ucdavisdatalab/sandbox_git
https://github.com/ucdavisdatalab/workshop_python_basics
https://github.com/ucdavisdatalab/workshop_nlp_with_python

20 Resources

20.4 Resources for Julia

• UC Davis Julia Users Group Julia Basics Workshop23 - foundational Julia programming

20.5 Scientific figures

• Ten Simple Rules for Better Figures (Rougier, Droettboom, and Bourne 2014)

20.6 Writing

• Unpacking the Scientific Toolbox (Silbiger and Stubler 2019)
• ICMJE Definition of authorship (International Committee of Medical Journal Editors,

n.d.)
• Computational science: …why scientific programming does not compute (Merali and

Giles 2010)
• The Pathway to Publishing: A Guide to Quantitative Writing in the Health Sciences24

• Principles of Scientific Writing25 - a handbook covering scientific writing principles
including citations and evidence, word choice, and conciseness

• Secret, actionable writing tips26

20.7 Presentations

• How to tell a compelling story in scientific presentations (Van Noorden 2021)
• How to give a killer narratively-driven scientific talk27

• How to make a better poster28

• How to make an even better poster29

20.8 Professional advice

• Professional advice, especially for your first job30

• Team Public Health Substack31

23https://ucjug.github.io/workshop_julia_basics/
24https://link.springer.com/book/10.1007/978-3-030-98175-4
25https://github.com/d-morrison/psw
26https://x.com/acagamic/status/1680381737816424450
27https://www.sciencedirect.com/science/article/pii/S1471491423000928
28https://www.youtube.com/watch?v=1RwJbhkCA58&t=1171s
29https://mitcommlab.mit.edu/be/2023/09/27/toward-an-evenbetterposter-improving-the-betterposter-

template/
30https://docs.google.com/document/d/1ckgRCcr7FFPyymyMA6Y_-cB_vftOyrrxT28c6gRg0PI/edit
31https://teampublichealth.substack.com/

176

https://ucjug.github.io/workshop_julia_basics/
https://link.springer.com/book/10.1007/978-3-030-98175-4
https://github.com/d-morrison/psw
https://x.com/acagamic/status/1680381737816424450
https://www.sciencedirect.com/science/article/pii/S1471491423000928
https://www.youtube.com/watch?v=1RwJbhkCA58&t=1171s
https://mitcommlab.mit.edu/be/2023/09/27/toward-an-evenbetterposter-improving-the-betterposter-template/
https://mitcommlab.mit.edu/be/2023/09/27/toward-an-evenbetterposter-improving-the-betterposter-template/
https://docs.google.com/document/d/1ckgRCcr7FFPyymyMA6Y_-cB_vftOyrrxT28c6gRg0PI/edit
https://teampublichealth.substack.com/

20 Resources

20.9 Funding

• Building Your Funding Train32

• NIH Grant Writing Resources33

20.10 Ethics and global health research

• Global Code of Conduct For Research in Resource-Poor Settings34

• Addressing power asymmetries in global health (Abimbola et al. 2022)
• Transforming Global Health Partnerships35

32https://grantwriting.stanford.edu/funding-train/#ep
33https://www.niaid.nih.gov/grants-contracts/write-grant-application
34https://www.globalcodeofconduct.org/
35https://link.springer.com/book/9783031537929

177

https://grantwriting.stanford.edu/funding-train/#ep
https://www.niaid.nih.gov/grants-contracts/write-grant-application
https://www.globalcodeofconduct.org/
https://link.springer.com/book/9783031537929

21 Professional Development

Adapted by UCD-SeRG team from original by Jade Benjamin-Chung1

21.1 Mentoring Philosophy

We believe in individualized mentoring that supports each person’s unique career goals.
Effective mentoring requires:

• Regular, open communication between mentees and mentors
• Mutual respect and trust
• Clear expectations and goals
• Constructive feedback
• Support for both research and career development

21.2 Individual Development Plans

All graduate students and postdocs should maintain an Individual Development Plan (IDP)
that outlines:

• Short-term and long-term career goals
• Skills to develop
• Training needs and opportunities
• Timeline and milestones
• Progress toward goals

Update your IDP at least annually and discuss it with your PI. Useful resources:

• myIDP - Individual Development Plan tool2
• NIH OITE Career Resources3

21.3 Presentations and Conferences

We encourage lab members to present their work at conferences and seminars:

• Discuss conference opportunities with PIs early
• Submit abstracts with PI approval
• Practice presentations in lab meeting before the conference
• Funding for conferences depends on availability and should be discussed in advance

1https://jadebc.github.io/lab-manual/
2https://myidp.sciencecareers.org/
3https://www.training.nih.gov/career-services/

178

https://jadebc.github.io/lab-manual/
https://myidp.sciencecareers.org/
https://www.training.nih.gov/career-services/

21 Professional Development

Resources for effective presentations:

• How to tell a compelling story in scientific presentations4

• How to give a killer narratively-driven scientific talk5

• How to make a better poster6

• How to make an even better poster7

21.4 Scientific Figures

Creating clear, effective figures is essential for communicating research findings:

• Label x-axis and y-axis clearly
• Use panel labels when including multiple subplots
• Include sufficient tick marks and labels
• Use appropriate font sizes (readable but not distracting)
• Use colorblind-friendly palettes (see ColorBrewer8 or iwanthue9)
• Define colors, shapes, and line types in legends
• Minimize abbreviations in labels and legends
• Use transparency to show overlapping data
• Show measures of precision (e.g., 95% confidence intervals)

Resources:

• Ten Simple Rules for Better Figures10

21.5 Grant Writing

• Graduate students and postdocs are encouraged to apply for fellowships (e.g., NIH
F31, NSF GRFP, K awards)

• PIs will support fellowship applications with feedback, letters of support, and mentor-
ing

• Start planning fellowship applications well in advance of deadlines (typically 3-6
months)

• Attend grant writing workshops and seek feedback from multiple sources

Resources:

• Building Your Funding Train11

• NIH Funding Opportunities12

• NIH Grant Writing Resources13

4https://www.nature.com/articles/d41586-021-03603-2
5https://www.sciencedirect.com/science/article/pii/S1471491423000928
6https://www.youtube.com/watch?v=1RwJbhkCA58
7https://mitcommlab.mit.edu/be/2023/09/27/toward-an-evenbetterposter-improving-the-betterposter-

template/
8http://colorbrewer2.org/
9https://medialab.github.io/iwanthue/

10https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833
11https://grantwriting.stanford.edu/funding-train/
12https://grants.nih.gov
13https://www.niaid.nih.gov/grants-contracts/write-grant-application

179

https://www.nature.com/articles/d41586-021-03603-2
https://www.sciencedirect.com/science/article/pii/S1471491423000928
https://www.youtube.com/watch?v=1RwJbhkCA58
https://mitcommlab.mit.edu/be/2023/09/27/toward-an-evenbetterposter-improving-the-betterposter-template/
https://mitcommlab.mit.edu/be/2023/09/27/toward-an-evenbetterposter-improving-the-betterposter-template/
http://colorbrewer2.org/
https://medialab.github.io/iwanthue/
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833
https://grantwriting.stanford.edu/funding-train/
https://grants.nih.gov
https://www.niaid.nih.gov/grants-contracts/write-grant-application

21 Professional Development

21.6 PhD Dissertation Requirements

Understanding what constitutes a sufficient PhD dissertation is crucial for setting realistic
expectations and timelines. The dissertation represents an important milestone, but it
doesn’t need to be your magnum opus.

21.6.1 Review Previous Dissertations

Before setting your dissertation goals, read previous dissertations from students in your
program. This helps you:

• Understand the typical scope and depth expected
• See different approaches to structure and presentation
• Calibrate your expectations based on successful examples
• Identify common patterns and standards in your field

Most universities maintain electronic dissertation repositories, making it easy to access
recent examples from your program.

21.6.2 Publication Requirements

Three first-author papers typically suffice for a dissertation in public health and biomedical
sciences. If academic peers in reputable journals have approved your work through peer
review, this demonstrates that your research meets professional standards. Your dissertation
committee should recognize this external validation.

The specific publication requirements may vary by program and institution, so consult your
program’s guidelines and discuss expectations with your committee early. However, three
substantial first-author publications generally demonstrate:

• Independent research capability
• Ability to communicate findings effectively
• Contribution to the scientific literature
• Readiness for an academic or research career

21.6.3 External Validation and Fast-Tracking

If you have a job offer waiting, you can usually get fast-tracked through the dissertation
process. The reasoning is straightforward: your work has been externally validated as
worthwhile by prospective employers.

Since most post-PhD positions offer better compensation than graduate stipends, it’s
difficult to justify prolonging your graduation when you’ve already demonstrated professional
competence. This applies whether the job offer is in academia, industry, government, or
nonprofit sectors.

180

21 Professional Development

21.6.4 Historical Context: The Masterpiece Tradition

The dissertation is a spiritual successor to an apprentice’s masterpiece14 in craft guilds.
Historically, a masterpiece was the piece of work that demonstrated an apprentice had
achieved sufficient skill to join the guild as a master craftsperson. It was not meant to be
the best work they would ever produce—it was meant to prove they were ready to work
independently.

Similarly, your dissertation should demonstrate that you’re ready to conduct independent
research. It’s your first professional-level work, not your career highlight. This perspective
helps set appropriate expectations:

• The dissertation proves you can conduct rigorous research
• It doesn’t need to solve every problem in your field
• It doesn’t need to be flawless
• It doesn’t need to be all-encompassing
• It just needs to constitute incremental progress in your field

21.6.5 Setting Realistic Expectations

Many PhD students struggle with perfectionism or “scope creep” in their dissertations.
Remember:

• Done is better than perfect when it comes to dissertations
• You’ll have your entire career to refine and expand on these ideas
• The goal is to finish and move forward, not to write the definitive work on your topic
• Your committee wants to see you succeed and graduate

Focus on making a solid, incremental contribution to knowledge in your field. That’s what
a dissertation is meant to be—no more, no less.

21.6.6 Resources

Dissertation writing tools:

• quarto-thesis15 - Quarto extension for creating masters or PhD theses with professional
LaTeX formatting

21.7 Teaching and Outreach

Teaching and outreach are valuable professional development opportunities:

• Graduate students are encouraged to gain teaching experience
• We support science communication and outreach activities
• Discuss opportunities with PIs

14https://en.wikipedia.org/wiki/Masterpiece#History
15https://github.com/nmfs-opensci/quarto-thesis

181

https://en.wikipedia.org/wiki/Masterpiece#History
https://github.com/nmfs-opensci/quarto-thesis

21 Professional Development

The UC Davis DataLab16 offers various workshops and learning materials that can sup-
port your teaching and professional development. Their workshop index17 provides a
comprehensive catalog of available resources.

21.8 Networking

Building a professional network is important for your career:

• Attend seminars and departmental events
• Connect with researchers in your field
• Join professional societies
• Use professional social media platforms to share research and engage with the scientific

community

16https://github.com/ucdavisdatalab
17https://ucdavisdatalab.github.io/workshop_index/

182

https://github.com/ucdavisdatalab
https://ucdavisdatalab.github.io/workshop_index/

22 Writing

22.1 Writing to Clarify Your Thinking

Writing is a powerful tool for clarifying your thoughts, even before you start searching
for answers. When questions or ideas come up, it’s good practice to write them down
immediately—this helps you:

• Organize your thoughts and identify what you actually need to know
• Articulate the problem more precisely
• Often realize the answer yourself through the process of writing

As Leslie Lamport, a Turing Award winner and computer scientist, states: “If you think you
understand something, and don’t write down your ideas, you only think you’re thinking”
(Lamport 2019).

183

23 Manuscript Preparation and Publication

Adapted by UCD-SeRG team from original by Jade Benjamin-Chung1

23.1 Publication Process

The typical workflow for manuscript preparation and publication:

1. Planning: Discuss target journals, outline, and timeline with PIs
2. Drafting: Lead author prepares initial draft
3. Internal review: Co-authors review and provide feedback
4. Revision: Lead author incorporates feedback iteratively
5. PI approval: Obtain final approval from PIs before submission
6. Submission: Submit to journal
7. Revisions: Lead author coordinates response to peer reviewers
8. Publication: Celebrate and share!

23.2 Responding to Peer Review

When a journal asks for revisions, you will typically need to provide a point-by-point
response to the reviewers’ comments. The key strategy is to use the “yes-and” approach2

from improvisational theater—building on what reviewers say rather than contradicting
them. Try to avoid explicitly disagreeing with reviewers if at all possible.

Standard response format:

The typical response follows this pattern:

“Thank you for raising this important point. We agree, and now state (page
##):

[quote a section of the revised manuscript here]”

Balancing direct response and manuscript content:

There can be some overlap between the direct response to the reviewer (the sentences before
“now state”) and what goes into the revised manuscript (the part after “(page ##)”). This
is acceptable, but we usually try to put as much of the content into the revised manuscript
as possible, and minimize the direct response section. The goal is to make the manuscript
self-contained while showing the reviewer that you’ve addressed their concern.

When content already exists:

1https://jadebc.github.io/lab-manual/
2https://en.wikipedia.org/wiki/Yes,_and_...

184

https://jadebc.github.io/lab-manual/
https://en.wikipedia.org/wiki/Yes,_and_...

23 Manuscript Preparation and Publication

Sometimes, a reviewer asks for content that was already in the manuscript. In these cases,
first see if there’s anything you can elaborate or clarify. Even if you don’t see room for
improvement, you can usually respond with:

“We agree, and now state (page ##):

[quote the content that was already there before]”

The reviewer doesn’t need to know that they missed it the last time (see also: implicature3.

Additional tips:

• Always thank reviewers for their time and feedback
• Quote page numbers from the revised manuscript
• Use direct quotes from your revised text when possible
• Maintain a respectful and collaborative tone throughout
• If you make changes beyond what the reviewer requested, mention them briefly

23.3 Preprints and Open Access

• We encourage posting preprints prior to or during peer review on platforms like
medRxiv4 or bioRxiv5

• Preprints allow rapid dissemination of findings and can be cited in grant applications
• We support publishing in open access journals when possible to maximize accessibility
• Many funders, including NIH, have public access policies that require making publica-

tions freely available

A preprint is a scientific manuscript that has not been peer reviewed. Preprint servers create
digital object identifiers (DOIs) and can be cited in other articles and in grant applications.
Because the peer review process can take many months, publishing preprints prior to or
during peer review enables other scientists to immediately learn from and build on your
work. Importantly, NIH allows applicants to include preprint citations in their biosketches.
In most cases, we publish preprints on medRxiv6.

23.4 Reporting Checklists

Using reporting checklists ensures that publications contain information needed for readers
to assess validity and reproducibility. We use checklists appropriate to study design:

• CONSORT for randomized trials
• STROBE for observational studies
• PRISMA for systematic reviews
• Others as appropriate (see EQUATOR Network7)

3https://en.wikipedia.org/wiki/Implicature
4https://www.medrxiv.org/
5https://www.biorxiv.org/
6https://www.medrxiv.org/
7https://www.equator-network.org/

185

https://en.wikipedia.org/wiki/Implicature
https://www.medrxiv.org/
https://www.biorxiv.org/
https://www.medrxiv.org/
https://www.equator-network.org/

23 Manuscript Preparation and Publication

23.5 Manuscript Checklist

Before submitting a manuscript:

� Completed relevant reporting checklist
� Results are reproducible (rerunning code replicates tables/figures exactly)
� Target journal selected
� Title is declarative and states findings clearly
� Word count meets journal requirements
� Manuscript follows journal formatting guidelines
� Consistent voice throughout (typically active voice)
� All figures and tables referenced in main text
� Captions for all figures and tables
� Tables/figures numbered by order of appearance
� Abbreviations defined at first use and used sparingly
� Avoid subjective wording (e.g., “interesting”, “dramatic”)
� Avoid directionless statements (specify direction of associations)
� Causal language only when supported by study design
� Avoid “significant” (easily confused with statistical significance)
� Author contributions drafted using CRediT Taxonomy

23.6 Scientific Writing: Claims and Evidence

All factual claims in scientific writing should be supported by appropriate evidence.

Citation requirements:

• Cite primary sources for factual statements about established knowledge, methods,
or findings

• Cite official documentation when describing how software, tools, or systems work
• Link to authoritative sources like peer-reviewed publications, official repositories,

or technical specifications
• Avoid citing secondary sources when primary sources are available

When you can’t find a citation:

• Demonstrate directly: Show the behavior through experiments, data, or explicit
examples

• Acknowledge uncertainty: Use appropriate hedging language (“may”, “appears
to”, “in our experience”) when evidence is limited

• Remove the claim: If you cannot substantiate a claim with either citations or direct
evidence, consider whether it needs to be included

Why this matters:

• Builds reader trust and credibility
• Enables readers to verify information independently
• Maintains scientific rigor in all communications
• Prevents propagation of misinformation

186

23 Manuscript Preparation and Publication

This principle applies to all lab writing, including: manuscripts, documentation, grant
applications, and technical reports.

Using AI tools for writing:

When using AI tools to help develop manuscripts or other academic writing, follow the
special guidance in Section 18.4 to ensure transparency, maintain intellectual ownership,
and avoid plagiarism.

187

References

“2001: A Space Odyssey.” 1968. Film. https://en.wikipedia.org/wiki/2001:_A_Space_
Odyssey_(film).

Abimbola, Seye, Sheena Asthana, Cristina Montenegro, et al. 2022. “Addressing Power
Asymmetries in Global Health: Imperatives in the Wake of the COVID-19 Pandemic.”
PLOS Global Public Health 2 (10). https://doi.org/10.1371/journal.pgph.0002269.

Asimov, Isaac. 1950. “I, Robot.” New York: Novel; Gnome Press. https://search.library.
ucdavis.edu/permalink/01UCD_INST/9fle3i/alma990000226350403126.

Baker, Monya. 2019. “How to Tackle the Reproducibility Crisis in Ten Steps.” Nature.
https://doi.org/10.1038/d41586-019-01431-z.

“Battlestar Galactica.” 2004. Television Series. https://en.wikipedia.org/wiki/Battlestar_
Galactica_(2004_TV_series).

Benjamin-Chung, Jade, Kunal Mishra, Stephanie Djajadi, Nolan Pokpongkiat, Anna
Nguyen, Iris Tong, and Gabby Barratt Heitmann. 2024. “Benjamin-Chung Lab Manual.”
https://jadebc.github.io/lab-manual/.

“Blade Runner.” 1982. Film. https://en.wikipedia.org/wiki/Blade_Runner.
Bryan, Jennifer. 2023. Happy Git and GitHub for the useR. https://happygitwithr.com/.
Bryan, Jennifer, Jim Hester, David Robinson, Hadley Wickham, and Christophe Dervieux.

2024. Reprex: Prepare Reproducible Example Code via the Clipboard. https://reprex.
tidyverse.org/.

Card, Orson Scott. 1985. “Ender’s Game.” Novel; Tor Books. https://en.wikipedia.org/
wiki/Ender%27s_Game.

Crameri, Fabio, Grace E. Shephard, and Philip J. Heron. 2020. “The Misuse of Colour in
Science Communication.” Nature Communications 11. https://doi.org/10.1038/s41467-
020-19160-7.

“Creative Commons Attribution-NonCommercial 4.0 International License.” n.d. Creative
Commons. http://creativecommons.org/licenses/by-nc/4.0/.

“CRediT: Contributor Roles Taxonomy.” n.d. PLOS ONE. https://journals.plos.org/
plosone/s/authorship.

“Dryad Digital Repository.” n.d. Dryad. https://datadryad.org/.
“EQUATOR Network: Enhancing the QUAlity and Transparency of Health Research.” n.d.

EQUATOR Network. https://www.equator-network.org/.
Fay, Colin, Sébastien Rochette, Vincent Guyader, and Cervan Girard. 2021. Engineering

Production-Grade Shiny Apps. Chapman; Hall/CRC. https://engineering-shiny.org/.
Flight of the Conchords. 2007. “The Humans Are Dead.” Music Video. https://www.

youtube.com/watch?v=B1BdQcJ2ZYY.
Gewerd-Strauss. 2023. “Mermaid Rendering to Docx Halts Indefinitely When Run Through

Command Line.” Quarto Development Team. 2023. https://github.com/orgs/quarto-
dev/discussions/6085.

“GitHub Desktop.” n.d. GitHub. https://desktop.github.com/.
Herbert, Frank. 1965. “Dune.” Novel. https://en.wikipedia.org/wiki/Organizations_of_

the_Dune_universe#Thinking_machines.
“How to Store and Manage Your Data.” n.d. PLOS. https://plos.org/resource/how-to-

store-and-manage-your-data/.

188

https://en.wikipedia.org/wiki/2001:_A_Space_Odyssey_(film)
https://en.wikipedia.org/wiki/2001:_A_Space_Odyssey_(film)
https://doi.org/10.1371/journal.pgph.0002269
https://search.library.ucdavis.edu/permalink/01UCD_INST/9fle3i/alma990000226350403126
https://search.library.ucdavis.edu/permalink/01UCD_INST/9fle3i/alma990000226350403126
https://doi.org/10.1038/d41586-019-01431-z
https://en.wikipedia.org/wiki/Battlestar_Galactica_(2004_TV_series)
https://en.wikipedia.org/wiki/Battlestar_Galactica_(2004_TV_series)
https://jadebc.github.io/lab-manual/
https://en.wikipedia.org/wiki/Blade_Runner
https://happygitwithr.com/
https://reprex.tidyverse.org/
https://reprex.tidyverse.org/
https://en.wikipedia.org/wiki/Ender%27s_Game
https://en.wikipedia.org/wiki/Ender%27s_Game
https://doi.org/10.1038/s41467-020-19160-7
https://doi.org/10.1038/s41467-020-19160-7
http://creativecommons.org/licenses/by-nc/4.0/
https://journals.plos.org/plosone/s/authorship
https://journals.plos.org/plosone/s/authorship
https://datadryad.org/
https://www.equator-network.org/
https://engineering-shiny.org/
https://www.youtube.com/watch?v=B1BdQcJ2ZYY
https://www.youtube.com/watch?v=B1BdQcJ2ZYY
https://github.com/orgs/quarto-dev/discussions/6085
https://github.com/orgs/quarto-dev/discussions/6085
https://desktop.github.com/
https://en.wikipedia.org/wiki/Organizations_of_the_Dune_universe#Thinking_machines
https://en.wikipedia.org/wiki/Organizations_of_the_Dune_universe#Thinking_machines
https://plos.org/resource/how-to-store-and-manage-your-data/
https://plos.org/resource/how-to-store-and-manage-your-data/

References

International Committee of Medical Journal Editors. n.d. “Defining the Role of Authors
and Contributors.” ICMJE. http://www.icmje.org/recommendations/browse/roles-and-
responsibilities/defining-the-role-of-authors-and-contributors.html.

Lamport, Leslie. 2019. “Think and Write with Leslie Lamport.” Podcast interview.
https://mentors.fm/2019/08/13/think-and-write-with-leslie-lamport/.

LeCun, Yann. 2022. “A Path Towards Autonomous Machine Intelligence.” Meta AI
Research; New York University; Technical Report. https://openreview.net/forum?id=
BZ5a1r-kVsf.

“medRxiv: The Preprint Server for Health Sciences.” n.d. Cold Spring Harbor Laboratory.
https://www.medrxiv.org/.

Merali, Zeeya, and Jim Giles. 2010. “Computational Science: Error ... Why Scientific
Programming Does Not Compute.” Nature 467: 775–77. https://doi.org/10.1038/
467775a.

Munafò, Marcus R., Brian A. Nosek, Dorothy V. M. Bishop, Katherine S. Button, Christo-
pher D. Chambers, Nathalie Percie du Sert, Uri Simonsohn, Eric-Jan Wagenmakers,
Jennifer J. Ware, and John P. A. Ioannidis. 2017. “A Manifesto for Reproducible
Science.” Nature Human Behaviour 1. https://doi.org/10.1038/s41562-016-0021.

Nuzzo, Regina. 2015. “How Scientists Fool Themselves – and How They Can Stop.” Nature
526: 182–85. https://doi.org/10.1038/526182a.

“Open Science Framework.” n.d. Center for Open Science. https://osf.io/.
“Quarto Cannot Render Mermaid or Dot Images to Docx and Pdf Formats.” 2023. Quarto

Development Team. 2023. https://github.com/quarto-dev/quarto-cli/issues/3809.
Robertson, Seth. n.d. “On Undoing, Fixing, or Removing Commits in Git.” https:

//sethrobertson.github.io/GitFixUm/fixup.html.
Rougier, Nicolas P., Michael Droettboom, and Philip E. Bourne. 2014. “Ten Simple Rules

for Better Figures.” PLOS Computational Biology 10 (9). https://doi.org/10.1371/
journal.pcbi.1003833.

Silbiger, Nyssa J., and Ariel D. Stubler. 2019. “Unpacking the Scientific Toolbox: Five
Skills for the Modern Scientist.” Nature. https://doi.org/10.1038/d41586-019-02918-5.

“Slurm Workload Manager: Sbatch Documentation.” n.d. SchedMD. https://slurm.
schedmd.com/sbatch.html.

Stoddart, Charlotte. 2019. “Is There a Reproducibility Crisis in Science?” Nature.
https://doi.org/10.1038/d41586-019-00067-3.

“Terminator 3: Rise of the Machines.” 2003. Film. https://en.wikipedia.org/wiki/
Terminator_3:_Rise_of_the_Machines.

“The Matrix.” 1999. Film. https://en.wikipedia.org/wiki/The_Matrix.
Tidyverse Team. 2023. Tidyverse Code Review Principles. https://code-review.tidyverse.

org/.
Van Noorden, Richard. 2021. “Scientists and Science Communicators Swap Tips on How

to Tell Compelling Stories.” Nature. https://doi.org/10.1038/d41586-021-03603-2.
“WarGames.” 1983. Film. https://en.wikipedia.org/wiki/WarGames.
Wickham, Hadley. 2019. Advanced r. 2nd ed. Chapman; Hall/CRC. https://adv-r.hadley.

nz/.
———. 2021. Mastering Shiny. O’Reilly Media. https://mastering-shiny.org/.
———. 2023a. The Tidyverse Style Guide. https://style.tidyverse.org/.
———. 2023b. Tidyverse Design Guide. https://design.tidyverse.org/.
Wickham, Hadley, and Jennifer Bryan. 2023. R Packages. 2nd ed. O’Reilly Media.

https://r-pkgs.org/.
Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. 2023. R for Data

Science. 2nd ed. O’Reilly Media. https://r4ds.hadley.nz/.
Wickham, Hadley, Peter Danenberg, Gábor Csárdi, and Manuel Eugster. 2024. Roxygen2:

189

http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
https://mentors.fm/2019/08/13/think-and-write-with-leslie-lamport/
https://openreview.net/forum?id=BZ5a1r-kVsf
https://openreview.net/forum?id=BZ5a1r-kVsf
https://www.medrxiv.org/
https://doi.org/10.1038/467775a
https://doi.org/10.1038/467775a
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1038/526182a
https://osf.io/
https://github.com/quarto-dev/quarto-cli/issues/3809
https://sethrobertson.github.io/GitFixUm/fixup.html
https://sethrobertson.github.io/GitFixUm/fixup.html
https://doi.org/10.1371/journal.pcbi.1003833
https://doi.org/10.1371/journal.pcbi.1003833
https://doi.org/10.1038/d41586-019-02918-5
https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/sbatch.html
https://doi.org/10.1038/d41586-019-00067-3
https://en.wikipedia.org/wiki/Terminator_3:_Rise_of_the_Machines
https://en.wikipedia.org/wiki/Terminator_3:_Rise_of_the_Machines
https://en.wikipedia.org/wiki/The_Matrix
https://code-review.tidyverse.org/
https://code-review.tidyverse.org/
https://doi.org/10.1038/d41586-021-03603-2
https://en.wikipedia.org/wiki/WarGames
https://adv-r.hadley.nz/
https://adv-r.hadley.nz/
https://mastering-shiny.org/
https://style.tidyverse.org/
https://design.tidyverse.org/
https://r-pkgs.org/
https://r4ds.hadley.nz/

References

In-Line Documentation for r. https://roxygen2.r-lib.org/.

190

https://roxygen2.r-lib.org/

Copilot Instructions File

For the complete .github/copilot-instructions.md file, please view the HTML version
of this appendix at: https://ucd-serg.github.io/lab-manual/appendix-copilot-instructions.
html

191

https://ucd-serg.github.io/lab-manual/appendix-copilot-instructions.html
https://ucd-serg.github.io/lab-manual/appendix-copilot-instructions.html

Copilot Setup Steps File

For the complete .github/workflows/copilot-setup-steps.yml file, please view the
HTML version of this appendix at: https://ucd-serg.github.io/lab-manual/appendix-copilot-
setup-steps.html

192

https://ucd-serg.github.io/lab-manual/appendix-copilot-setup-steps.html
https://ucd-serg.github.io/lab-manual/appendix-copilot-setup-steps.html

Document Generation Metadata

This document was generated from the following git commit:

• Branch: main
• Commit: 9668b88
• Full commit hash: 9668b885c0a91d6fbba57c874709f6e57d1c18e5
• Commit date: 2026-02-01 18:45:34 -0800

When transferring edits from this DOCX file back to the Quarto source files, use this
commit information to set up the PR correctly and account for any commits that have
been added since this document was generated.

193

	1 Welcome to UCD-SeRG!
	1.1 About the lab
	1.2 About this lab manual

	2 Culture and conduct
	2.1 Lab culture
	2.2 Diversity, equity, and inclusion
	2.3 Protecting human subjects
	2.4 Authorship

	3 Communication and coordination
	3.1 Microsoft Teams
	3.2 Email
	3.3 Task Management
	3.4 Google Drive
	3.5 UC Davis Box and SharePoint
	3.6 Meetings
	3.7 Code Review

	4 Reproducibility
	4.1 What is the reproducibility crisis?
	4.2 Study design
	4.3 Register study protocols
	4.4 Write and register pre-analysis plans
	4.5 Create reproducible workflows
	4.6 Process and analyze data with internal replication and masking
	4.7 Use reporting checklists with manuscripts
	4.8 Publish preprints
	4.9 Publish data (when possible) and replication scripts

	5 Code repositories
	5.1 Package Structure
	5.2 .Rproj files
	5.3 Organizing the data-raw folder

	6 R Coding Practices
	6.1 Lab Protocols for Code and Data
	6.2 Essential R Package Development Tools
	6.3 Complete Package Development Workflow
	6.4 Organizing scripts
	6.5 Testing Requirements
	6.6 Benchmarking
	6.7 Iterative Operations
	6.8 Reading and Saving Data
	6.9 Version Control and Collaboration
	6.10 Quality Assurance Checklist
	6.11 Automated Code Styling
	6.12 Documenting your code
	6.13 Object naming
	6.14 Function calls
	6.15 The here package
	6.16 Reading/Saving Data
	6.17 Integrating Box and Dropbox
	6.18 Tidyverse
	6.19 Core Tidyverse Packages
	6.20 Base R to Tidyverse Translation
	6.21 Programming with Tidyverse
	6.22 Coding with R and Python
	6.23 Repeating analyses with different variations
	6.24 Reviewing Code
	6.25 Constructing Pull Requests
	6.26 Reviewing Pull Requests
	6.27 Creating a Pull Request Template
	6.28 Getting Help with Code
	6.29 Additional Resources

	7 Continuous Integration
	7.1 Understanding GitHub Actions
	7.2 Setting Up GitHub Actions
	7.3 How GitHub Actions Workflows Work
	7.4 Workflow Files and Security
	7.5 Troubleshooting Failed Workflows
	7.6 Pull Request Comment Automation
	7.7 Additional Resources

	8 R Code Style
	8.1 General Principles
	8.2 Function Structure and Documentation
	8.3 Comments
	8.4 Line Breaks and Formatting
	8.5 Markdown and Quarto Formatting
	8.6 Messaging and User Communication
	8.7 Package Code Practices
	8.8 Tidyverse Replacements
	8.9 The here Package
	8.10 Object Naming
	8.11 Automated Tools for Style and Project Workflow
	8.12 Additional Resources

	9 Big data
	9.1 The data.table package
	9.2 Using downsampled data
	9.3 Optimal RStudio set up

	10 Data masking
	10.1 General Overview
	10.2 Technical Overview

	11 Quarto
	11.1 Introduction
	11.2 Quarto Basics
	11.3 Building Quarto Books
	11.4 Quarto Profiles
	11.5 Advanced Features
	11.6 Mermaid Diagrams
	11.7 Additional Resources

	12 Github
	12.1 Basics
	12.2 GitHub Education and Copilot Access
	12.3 Github Desktop
	12.4 Git Branching
	12.5 Example Workflow
	12.6 Commonly Used Git Commands
	12.7 How often should I commit?
	12.8 Repeated Amend Workflow
	12.9 What should be pushed to Github?
	12.10 Customizing How Files Appear on GitHub

	13 Unix
	13.1 Basics
	13.2 Syntax for both Mac/Windows
	13.3 Running Bash Scripts
	13.4 Running Rscripts in Windows
	13.5 Checking tasks and killing jobs
	13.6 Running big jobs

	14 Reproducible Environments
	14.1 Package Version Control with renv

	15 Code Publication
	15.1 Checklist overview
	15.2 Fill out file headers
	15.3 Clean up comments
	15.4 Document functions
	15.5 Remove deprecated filepaths
	15.6 Ensure project runs via bash
	15.7 Complete the README
	15.8 Clean up feature branches
	15.9 Create Github release

	16 Data Publication
	16.1 Overview
	16.2 Removing PHI
	16.3 Create public IDs
	16.4 Create a data repository
	16.5 Edit and test analysis scripts
	16.6 Create a public GitHub page for public scripts
	16.7 Go live

	17 High-performance computing (HPC)
	17.1 UC Davis Computing Resources
	17.2 Getting started with SLURM clusters
	17.3 Moving files to the cluster
	17.4 Installing packages on the cluster
	17.5 Testing your code
	17.6 Storage & group storage access
	17.7 Running big jobs

	18 Working with AI
	18.1 Responsibility for validation
	18.2 Disclosure of AI use
	18.3 Attribution of sources
	18.4 Using AI for Journal Articles
	18.5 Coding Agents

	19 Checklists
	19.1 Pre-analysis plan checklist
	19.2 Code checklist
	19.3 Manuscript checklist
	19.4 Figure checklist

	20 Resources
	20.1 Resources for R
	20.2 Resources for Git & Github
	20.3 Resources for Python
	20.4 Resources for Julia
	20.5 Scientific figures
	20.6 Writing
	20.7 Presentations
	20.8 Professional advice
	20.9 Funding
	20.10 Ethics and global health research

	21 Professional Development
	21.1 Mentoring Philosophy
	21.2 Individual Development Plans
	21.3 Presentations and Conferences
	21.4 Scientific Figures
	21.5 Grant Writing
	21.6 PhD Dissertation Requirements
	21.7 Teaching and Outreach
	21.8 Networking

	22 Writing
	22.1 Writing to Clarify Your Thinking

	23 Manuscript Preparation and Publication
	23.1 Publication Process
	23.2 Responding to Peer Review
	23.3 Preprints and Open Access
	23.4 Reporting Checklists
	23.5 Manuscript Checklist
	23.6 Scientific Writing: Claims and Evidence

	References
	Appendices
	Copilot Instructions File
	Copilot Setup Steps File
	Document Generation Metadata

